
UCLA Physics Fall 2014 Comprehensive Exam

2. (Classical Mechanics)

Consider the classical field theory in one space dimension, parameterized by the coordinate x, with a
single real scalar field φ(t, x), governed by the follwoing action,

S[φ] = S0

∫
dt dx

(
1

2
(∂tφ)2 − c2

2
(∂xφ)2 − ω2(1− cosφ)

)
Here, ω and c are real constants, respectively with dimensions of frequency and velocity. The overall
constant S0 has dimensions of angular momentum divided by velocity.

(a) Use the variational principle to obtain the Euler-Lagrange equation for φ(t, x), and give the expres-
sion for the total energy E of a general field configuration.

(b) Consider solutions to the Euler-Lagrange equation of (a) of the form,

φ(t, x) = f(y) y = γ(v) (x− vt)

for arbitrary constant velocity v. Show that it is possible to choose γ(v) such that f (as a function)
is governed by an equation which is independent of v; determine this γ(v), and the corresponding
solution(s) f such that cos (f(±∞)) = 1, and f(+∞) 6= f(−∞).

(c) Derive the relation between the total energy E of the solution and its velocity v, and show that this
relation is the relativistic one. Derive the mass of the soliton.
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Solution: Solution by Jonah Hyman (jthyman@g.ucla.edu)

(a) The problem specifically asks us to use the variational principle to find the Euler-Lagrange
equation. Consider a small variation δφ of the field φ. Then, we can write

S [φ+ δφ] = S0

∫
dt dx

(
1

2
(∂t(φ+ δφ))2 − c2

2
(∂x(φ+ δφ))2 − ω2(1− cos(φ+ δφ))

)
Expanding each term in the integrand to first order in δφ, we get

1

2
(∂t(φ+ δφ))

2
=

1

2
(∂tφ+ ∂t (δφ))

2

=
1

2
(∂tφ)

2
+ (∂tφ) (∂t(δφ)) +O(δφ)2

−c
2

2
(∂x(φ+ δφ))

2
= −c

2

2
(∂xφ+ ∂x (δφ))

2

= −c
2

2
(∂xφ)

2 − c2 (∂xφ) (∂x(δφ)) +O(δφ)2

−ω2(1− cos(φ+ δφ)) = −ω2
(
1− cosφ+ (δφ) sinφ+O(δφ)2

)
Putting everything back in the integrand and sorting the terms by powers of the small parameter
δφ, we get (to first order in δφ)

S [φ+ δφ] = S0

∫
dt dx

(
1

2
(∂tφ)2 − c2

2
(∂xφ)2 − ω2(1− cosφ)

)
︸ ︷︷ ︸

S[φ]

+ S0

∫
dt dx

(
(∂tφ) (∂t(δφ))− c2 (∂xφ) (∂x(δφ))− ω2(δφ) sinφ

)
(38)

The variation in the action is defined by

δS ≡ S [φ+ δφ]− S [φ] (39)

Therefore, in this case,

δS = S0

∫
dt dx

(
(∂tφ) (∂t(δφ))− c2 (∂xφ) (∂x(δφ))− ω2(δφ) sinφ

)
(40)

We need to separate the δφ factor from the rest of the integrand. To do so, integrate the first
two terms by parts (and don’t forget to change the sign of each term when doing so). As is
usual for these kinds of problems, we assume that φ decays quickly enough at infinity that we
can ignore the boundary term. This gives us

δS = S0

∫
dt dx

(
−
(
∂2t φ

)
(δφ) + c2

(
∂2xφ

)
(δφ)− ω2(δφ) sinφ

)
= S0

∫
dt dx

[
−
(
∂2t φ

)
+ c2

(
∂2xφ

)
− ω2 sinφ

]
(δφ) (41)

If φ satisfies the Euler-Lagrange equation, then the variation of the action δS is equal to zero
for any variation of the field δφ. Given this definition, we are justified in setting the term in
brackets equal to zero to get

−
(
∂2t φ

)
+ c2

(
∂2xφ

)
− ω2 sinφ = 0
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Multiplying through by a minus sign, we get the Euler-Lagrange equation

∂2t φ− c2∂2xφ+ ω2 sinφ = 0 (42)

This is known as the sine-Gordon equation. It resembles the massless Klein-Gordon equation,
which can be written ∂2t φ − c2∂2xφ = 0, with the addition of the sine term ω2 sinφ. (It is
customary to remark on the quality of the pun in the name “sine-Gordon.” Nicholas Wheeler
has called it a “weak but inevitable pun,” while Michael Gutperle has called it a “bad pun.”)

To find the energy of the field configuration, we use a generalization of a result valid for
standard classical mechanics:

If the Lagrangian has no explicit time-dependence, meaning ∂L
∂t = 0, then the energy E ≡∑

a
∂L
∂q̇a

q̇a − L is conserved.

Here, we have a field φ instead of a generalized coordinate qa, but the logic is the same. Since
S =

∫
Ldt, we can write the Lagrangian

L = S0

∫
dx

(
1

2
(∂tφ)2 − c2

2
(∂xφ)2 − ω2(1− cosφ)

)
(43)

(Note the difference between the Lagrangian and the Lagrangian density ; in this case, the La-
grangian density is the integrand of the Lagrangian above.)

In the case of classical field theory with a single field φ, the generalization of the equation
E ≡

∑
a
∂L
∂q̇a

q̇a − L is

E ≡ ∂L

∂(∂tφ)
∂tφ− L (44)

For this Lagrangian (43), we have

∂L

∂(∂tφ)
= S0

∫
dx (∂tφ) (45)

so

E = S0

∫
dx (∂tφ)

2 − S0

∫
dx

(
1

2
(∂tφ)2 − c2

2
(∂xφ)2 − ω2(1− cosφ)

)

E = S0

∫ ∞
−∞

dx

(
1

2
(∂tφ)2 +

c2

2
(∂xφ)2 + ω2(1− cosφ)

)
(46)

where we have inserted the limits of the integral, −∞ ≤ x ≤ ∞.

(b) We are asked to consider solutions to the Euler-Lagrange equation for which

φ(t, x) = f(y) and y = γ(v) (x− vt) (47)

for v an arbitrary constant. Before plugging this ansatz into the Euler-Lagrange equation, let’s
calculate the partial derivatives of φ(t, x). Using the chain rule on y, we get

∂tφ = f ′(y)
dy

dt
where f ′(y) ≡ df

dy

= −v γ(v) f ′(y) since y = γ(v) (x− vt) (48)
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∂2t φ = ∂t (−v γ(v) f ′(y)) since ∂tφ = −v γ(v) f ′(y)

= −v γ(v) f ′′(y)
dy

dt
using the chain rule

= v2 (γ(v))
2
f ′′(y) since y = γ(v) (x− vt) (49)

∂xφ = f ′(y)
dy

dx
where f ′(y) ≡ df

dy
(50)

= γ(v) f ′(y) since y = γ(v) (x− vt) (51)

∂2xφ = ∂x (γ(v) f ′(y)) since ∂xφ = γ(v) f ′(y)

= γ(v) f ′′(y)
dy

dt
using the chain rule

= (γ(v))
2
f ′′(y) since y = γ(v) (x− vt) (52)

Plugging (49) and (52) into the Euler-Lagrange equation (42) and using the fact that φ = f(y),
we get

0 = v2 (γ(v))
2
f ′′(y)− c2 (γ(v))

2
f ′′(y) + ω2 sin(f(y))

0 = (γ(v))2
(
v2 − c2

)
f ′′(y) + ω2 sin(f(y)) (53)

This equation will be independent of the parameter v if (γ(v))2 is proportional to (v2 − c2)−1;
in other words, if

(γ(v))
2 ∝ 1

v2 − c2
(54)

You might now remember that the letter γ represents the Lorentz factor in special relativity.
To heighten the analogy with special relativity, let’s choose the constant of proportionality so
that

(γ(v))
2

=
1

1− v2

c2

(55)

Then, we have γ(v) exactly equal to the Lorentz factor. (Since we can choose v arbitrarily now,
we will choose it to be less than c.)

γ(v) =
1√

1− v2

c2

(56)

We could define γ(v) differently, but any such difference could be absorbed into our definition
of f . With this definition of γ(v), (53) becomes

0 =
1

1− v2

c2

(
v2 − c2

)
f ′′(y) + ω2 sin(f(y))

0 = −c2f ′′(y) + ω2 sin(f(y))

or

f ′′(y) =
ω2

c2
sin(f(y)) (57)

In order to solve this differential equation, we need to use a trick. First, multiply both sides of
the equation by f ′(y).

f ′′(y) f ′(y) =
ω2

c2
sin(f(y)) f ′(y) (58)
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The left-hand side of this equation can be written as a total derivative using the chain rule:(
(f ′(y))2

)′
= 2f ′(y) f ′′(y), so f ′′(y) f ′(y) =

(
1

2
(f ′(y))2

)′
(59)

Similarly, the right-hand side can be written as a total derivative:

(cos(f(y)))
′

= − sin(f(y)) f ′(y), so
ω2

c2
sin(f(y)) f ′(y) =

(
−ω

2

c2
cos(f(y))

)′
(60)

Plugging into (58), we get (
1

2
(f ′(y))2

)′
=

(
−ω

2

c2
cos(f(y))

)′
Taking the antiderivative (and remembering the constant of integration), we get

1

2
(f ′(y))2 = −ω

2

c2
cos(f(y)) + C for a constant C (61)

To find the constant of integration C, we need to find a boundary condition for f ′(y). The
problem statement doesn’t explicitly state one, but it does state that cos(f(±∞)) = 1. This
implies that f(y) has a well-defined limit as y → ±∞. For physics purposes, this is enough to
imply that f ′(y) approaches 0 as y → ±∞. Plugging in the boundary conditions, we can solve
for C:

0 = −ω
2

c2
+ C since f ′(±∞) = 0 and cos(f(±∞)) = 1

=⇒ C =
ω2

c2
(62)

This gives us an ordinary differential equation for f ′(y):

1

2
(f ′(y))2 =

ω2

c2
[1− cos(f(y))] (63)

This differential equation can be solved by direct integration. Before integrating, though, it is
useful to simplify the right-hand side by using the power-reducing formula

sin2 x =
1− cos(2x)

2

This gives us
1

2
(f ′(y))2 =

ω2

c2

[
2 sin2

(
f(y)

2

)]
(64)

Solving for f ′(y), we get

(f ′(y))2 =
4ω2

c2
sin2

(
f(y)

2

)
f ′(y) = ±2ω

c
sin

(
f(y)

2

)
(65)

Note the use of the ± sign to account for both solutions of the quadratic equation. Now, we
are ready to set up the antiderivatives that we will use to solve this equation:

df

dy
= ±2ω

c
sin

(
f

2

)
∫

df

sin(f/2)
= ±2ω

c

∫
dy (66)
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Making a change of variables x ≡ f/2, the integral on the left-hand side becomes∫
df

sin(f/2)
= 2

∫
dx

sinx
(67)

This trig integral is best evaluated by knowing the answer already:∫
dx

sinx
= ln

[
tan

(x
2

)]
+ constant (68)

If you don’t know the answer already, this integral is a good example of solving trig integrals
using the “sledgehammer method”:

Sledgehammer method for solving trig integrals:
For a general trig integral that cannot be solved by another method, consider the substitu-
tion

t = tan
(x

2

)
(69)

Using the double-angle formulas

sin(2x) = 2 sinx cosx and cos(2x) = cos2 x− sin2 x = 2 cos2 x− 1

we have

tanx =
sinx

cosx
=

sin(2x)

2 cos2 x
=

sin(2x)

cos(2x) + 1

so

t = tan
(x

2

)
=

sinx

1 + cosx
(70)

Using the Pythagorean identity 1 + tan2 x = sec2 x and the power-reducing identity cos2 x =
1+cos(2x)

2 , we can also get

1 + t2 = 1 + tan2
(x

2

)
= sec2

(x
2

)
=

2

1 + cosx
(71)

Using (70) and (71), we can solve for sinx and cosx in terms of t:

sinx =
2t

1 + t2
and cosx =

2

1 + t2
− 1 =

1− t2

1 + t2
(72)

We can also use the derivative identity (tanx)′ = sec2 x and (71) to differentiate (69) and
solve for dx in terms of dt:

dt =
1

2
sec2

(x
2

)
dx =

1 + t2

2
dx =⇒ dx =

2

1 + t2
dt (73)

After using (72) and (73) to perform the substitution, the resulting integral in t can be
solved by the method of partial fractions.

For this integral, the substitution yields∫
dx

sinx
=

∫ (
1 + t2

2t

) (
2

1 + t2
dt

)
for t ≡ tan

(x
2

)
=

∫
1

t
dt (74)
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This integral is elementary: ∫
dx

sinx
= ln t+ constant

= ln
[
tan

(x
2

)]
+ constant (75)

Earlier, we made the change of variables x ≡ f/2, so writing (67) in terms of f , we get∫
df

sin(f/2)
= 2

∫
dx

sinx

= 2 ln
[
tan

(x
2

)]
+ constant

= 2 ln

[
tan

(
f

4

)]
+ constant since x ≡ f

2
(76)

Now that we have this antiderivative, we can now return to the differential equation in (66):∫
df

sin(f/2)
= ±2ω

c

∫
dy

2 ln

[
tan

(
f

4

)]
= ±2ω

c
y + constant

ln

[
tan

(
f

4

)]
= ±ω

c
y + δ for a constant δ (77)

Solving for f , we get

tan

(
f

4

)
= e±ωy/c+δ

f(y) = 4 arctan
[
e±ωy/c+δ

]
for a constant δ (78)

Since the value of δ does not have any effect on the behavior of f(y) as y → ±∞, the boundary
conditions are not sufficient to define δ. (The constant δ is basically a phase shift, and it can
be removed by redefining the origin of time.) So we will leave it as is. All in all,

f(y) = 4 arctan
[
e±ωy/c+δ

]
for a constant δ (79)

We can break this up into two possible options, one for each of the ± options:

f±(y) ≡ 4 arctan
[
e±ωy/c+δ

]
(80)

Note that arctan(∞) = π/2 and arctan(0) = 0. For that reason, we have

f+(−∞) = 0 and f+(+∞) = 4
(π

2

)
= 2π

f−(−∞) = 4
(π

2

)
= 2π and f−(+∞) = 0 (81)

These solutions for f(y) interpolate between 0 and 2π (or vice-versa), as shown in the graphs
below:
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(c) In part (a), we found the total energy of a field configuration (46)

E = S0

∫ ∞
−∞

dx

(
1

2
(∂tφ)2 +

c2

2
(∂xφ)2 + ω2(1− cosφ)

)
Using the definition of y, y ≡ γ (x− vt), we have dy = γ dx. In part (b), we calculated in (48)
and (51) that

∂tφ = −v γ f ′(y) and ∂xφ = γ f ′(y)

Plugging all this in, we get

E = S0

∫ ∞
−∞

dy

γ

[
1

2
(−v γ f ′(y))

2
+
c2

2
(γ f ′(y))2 + ω2 [1− cos(f(y))]

]
= S0

∫ ∞
−∞

dy

γ

[
c2

2
(f ′(y))2γ2

(
1 +

v2

c2

)
+ ω2 [1− cos(f(y))]

]
E =

S0c
2

γ

∫ ∞
−∞

dy

[
1

2
(f ′(y))2γ2

(
1 +

v2

c2

)
+
ω2

c2
[1− cos(f(y))]

]
(82)

Before proceeding further, note that the terms in the integrand looks similar to parts of a
differential equation for f ′ that we encountered in part (b) ((63) and (65)):

1

2
(f ′(y))2 =

ω2

c2
[1− cos(f(y))]

=⇒ f ′(y) = ±2ω

c
sin

(
f

2

)
(83)

Let’s use this equation to substitute for the second term in the integrand of (82):

E =
S0c

2

γ

∫ ∞
−∞

dy

[
1

2
(f ′(y))2γ2

(
1 +

v2

c2

)
+

1

2
(f ′(y))2

]
=
S0c

2

γ

∫ ∞
−∞

dy
1

2
(f ′(y))2

[
γ2
(

1 +
v2

c2

)
+ 1

]
=
S0c

2

γ

∫ ∞
−∞

dy
1

2
(f ′(y))2

[
1 + v2

c2

1− v2

c2

+ 1

]
since γ2 =

1

1− v2

c2

=
S0c

2

γ

∫ ∞
−∞

dy
1

2
(f ′(y))2

[
2

1− v2

c2

]

=
S0c

2

γ

∫ ∞
−∞

dy
1

2
(f ′(y))2

[
2γ2
]

since γ2 =
1

1− v2

c2

E = γS0c
2

∫ ∞
−∞

dy (f ′(y))2
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To take this integral, change variables to f(y), where df = f ′(y)dy:

E = γS0c
2

∫ f(∞)

f(−∞)

df

f ′(y)
(f ′(y))2

E = γS0c
2

∫ f(∞)

f(−∞)

df f ′(y) (84)

Applying (83) again, we can write the integrand in terms of f :

E = γS0c
2

∫ f(∞)

f(−∞)

df

[
±2ω

c
sin

(
f

2

)]
E = ±2γS0ωc

∫ f(∞)

f(−∞)

df sin

(
f

2

)
(85)

Taking the antiderivative with respect to f , we get

E = ±2γS0ωc

[
−2 cos

(
f

2

)]f(+∞)

f(−∞)

E± = ±2γS0ωc

[
−2 cos

(
f±(∞)

2

)
+ 2 cos

(
f±(−∞)

2

)]
(86)

Here, f± is the solution for f corresponding to the ± sign in (83). The limits for f±(±∞) were
given in (81): f+ interpolates between 0 and 2π, and f− does the opposite. Using these limits,
we get

E+ = +2γS0ωc

[
−2 cos

(
f+(∞)

2

)
+ 2 cos

(
f+(−∞)

2

)]
= 2γS0ωc

[
−2 cos

(
2π

2

)
+ 2 cos

(
0

2

)]
= 2γS0ωc [−2 cosπ + 2 cos 0]

= 2γS0ωc [−2(−1) + 2(1)]

= 8γS0ωc

E− = +2γS0ωc

[
−2 cos

(
f−(∞)

2

)
+ 2 cos

(
f−(−∞)

2

)]
= −2γS0ωc

[
−2 cos

(
0

2

)
+ 2 cos

(
2π

2

)]
= −2γS0ωc [−2 cos 0 + 2 cosπ]

= −2γS0ωc [−2(1) + 2(−1)]

= 8γS0ωc

In both cases, the energy is the same, so we can write

E = 8γS0ωc (87)

The only dependence of E on the velocity v is through the Lorentz factor γ:

E = (constant) γ(v) = (constant)
1√

1− v2

c2

(88)
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This is exactly what we would expect from special relativity, where the constant in this equation
is related to the mass of a particle:

E = γmc2 for γ ≡ 1√
1− v2

c2

(89)

Rewriting (87) to match this form, we can derive the mass of the field configuration identified
in (b) (which is one example of something called a soliton)

E = γ

(
8S0ω

c︸ ︷︷ ︸
m

)
c2

where the mass of the soliton is defined by

m =
8S0ω

c
(90)
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