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5. (Classical Mechanics)

An electron (charge e = �|e| and rest mass m) with mechanical momentum

p = p0 (x̂ sin ✓ + ŷ cos ✓)

enters into a static magnetic field region (x > 0) from a region of free space (zero magnetic field and
zero vector potential) at x < 0.

The magnetic field has no y-component. It is due to a vector potential which has only a y-component
Ay with (x, z) dependence, i.e.

A = ŷAy(x, z)

In addition, at z = 0 the magnetic field is perpendicular to the x-y plane.

Note: for this problem, you can assume the electron to be non-relativistic or fully relativistic, just
make that clear in your answers.

(a) Starting from the Lagrangian of a charged particle in external electromagnetic fields, construct the
relativistic Hamiltonian of the system and the canonical momentum of the particle.

(b) Show that the trajectory of an electron located at z = 0 with its momentum in the x-y plane will
stay in the x-y plane.

(c) Obtain two conserved quantities for the problem above and show, assuming that the electron even-
tually leaves the static magnetic field region, that this system is indeed a mirror for trajectories in
the x-y plane, namely an electron with initial momentum p is reflected such that the angles that
the incoming and outgoing trajectories make with the y-axis are equal in magnitude and opposite
in sign (i.e. ✓1 = ✓2 in the picture below).

(d) Find an equation for the depth of the penetration (the furthest the electron reaches into the magnetic
field region) and solve the resulting equation for the particular case of fieldB = G (x̂ z � ẑx). Which
sign of G corresponds to the trajectories shown in each figure of the figures below?
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Solution: Solution by Jonah Hyman (jthyman@g.ucla.edu)

Unusually, this problem gives us a choice. We can assume the electron to be either relativistic or
nonrelativistic. To make things easier for ourselves, we will solve this problem assuming that the
electron is nonrelativistic. We will work in SI units throughout.

(a) The Lagrangian for an nonrelativistic electron of mass m and charge e starts with the nonrel-
ativistic kinetic energy of a point particle:

K =
1

2
mṙ2 (65)

All that remains is to account for the magnetic field, which comes from the vector potential
given in the problem:

A(r) =

(
ŷAy(x, z) for x > 0

0 for x < 0
(66)

We need to know how to incorporate this vector potential in the Lagrangian. Here is the
relevant information:

Incorporating a vector potential into the Lagrangian:
SI units: Add +qṙ ·A.
Gaussian units: Add + qṙ·A

c
.

Incorporating a vector potential into the Hamiltonian:
SI units: Replace p with p� qA.
Gaussian units: Replace p with p� qA

c
.

Part (a) essentially asks us to confirm the second half of this box, given the first half of this
box. The Lagrangian is SI units is therefore

L =
1

2
mṙ2 + e ṙ ·A (67)

The canonical momentum is defined by

pC =
@L

@ṙ
(68)

Applying this formula to the Lagrangian for this problem (67), we get the canonical momentum

pC = mṙ+ eA (69)

Note that for systems with vector potentials, the canonical momentum is not the same as the
physical momentum! Indeed, from basic mechanics, the physical momentum of a nonrelativistic
particle is equal to

p = mṙ (70)

Note that the problem statement calls p to define the physical momentum. We will use pC to
define the canonical momentum. (69) tells us that

pC = p+ eA (71)

The Hamiltonian comes from the Lagrangian via a Legendre transform:

H(pC , r) = pC · ṙ� L (72)
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Using this formula, we get

H = (mṙ+ eA) · ṙ�
✓
1

2
mṙ2 + e ṙ ·A

◆

=
1

2
mṙ2

=
1

2
m

✓
pC � eA

m

◆2

writing H in terms of pC and r using (68)

=
(pC � eA)2

2m
(73)

Using (71), we can write this in terms of the physical momentum as well:

H =
(pC � eA)2

2m
=

p2

2m
where p = p0 (x̂ sin ✓ + ŷ cos ✓) (74)

(b) In order to determine the trajectory of a particle, we need to find the equation of motion of
the particle. The equation of motion of a particle of mass m, charge e, and velocity v = ṙ in a
magnetic field B = r⇥A is given by the Lorentz force law:

mr̈ = e ṙ⇥B =) r̈ =
e

m
ṙ⇥B (75)

The problem asks us to consider a particle that starts in the xy-plane (at z = 0) with momentum
in the xy-plane. This condition can be expressed as

z(0) = 0 and ż(0) = 0 (76)

To establish that the particle stays with these initial conditions stays in the xy-plane, we need
to establish that z(t) = 0 for all t. For that, we should examine the z-component of (75):

z̈ =
e

m
ż ẑ⇥B (77)

The problem tells us that at z = 0, the magnetic field is perpendicular to the xy-plane, so B
has only a z-component at z = 0. Since ẑ⇥ ẑ = 0, (77) implies that

z̈ = 0 if z = 0 (78)

One assumption of the Lagrangian method is that the first and second derivatives of the gen-
eralized coordinates are su�cient to specify the motion of the particle. For that reason, since
z = ż = z̈ = 0 at t = 0, we can infer that z = ż = 0 at a time t = dt shortly after t = 0. But
since z = ż = 0 at t = dt, (78) means that z̈ = 0 at t = dt.

We can repeat the same argument to get that z = ż = 0 at time t = 2dt. Repeating the
same argument, we can find that z = 0 at all times after t = 0. Therefore, if the electron starts
at z = 0 with momentum in the xy-plane, it will stay in the xy-plane.

(c) The first step is to determine the two conserved quantities mentioned in the problem. For this
step, we need to know some basic conservation laws:

Basic conservation laws from the Lagrangian:
If the Lagrangian has no explicit time-dependence, meaning @L

@t
= 0, then the energy E ⌘P

a

@L

@q̇a
q̇a � L is conserved.

If the Lagrangian does not depend on a generalized coordinate qa, the canonical momentum
associated with that coordinate, pa ⌘ @L

@q̇a
is conserved.
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Here’s a quick proof of each fact (using the Euler-Lagrange equation d

dt

⇣
@L

@q̇a

⌘
� @L

@qa
= 0):

dE

dt
=

X

a


d

dt

✓
@L

@q̇a

◆
q̇a +

@L

@q̇a
q̈a

�
� dL

dt

=
X

a


d

dt

✓
@L

@q̇a

◆
q̇a +

@L

@q̇a
q̈a

�
�

X

a


@L

@q̇a
q̈a +

@L

@qa
q̇a

�
since

@L

@t
= 0

=
X

a


d

dt

✓
@L

@q̇a

◆
� @L

@qa

�
q̇a

= 0 by the Euler-Lagrange equation

dpa

dt
=

d

dt

✓
@L

@q̇a

◆

=
@L

@qa
by the Euler-Lagrange equation

= 0 since L does not depend on qa

Note that since the Lagrangian is defined only up to a total derivative, there are other circum-
stances in which the energy or canonical momentum is conserved.

For this problem, plugging in the specific vector potential (66) into the generic Lagrangian
(67), we get

L =
1

2
mṙ2 + e ṙ ·A =

(
1

2
mṙ2 + e ẏ Ay(x, z) for x > 0

1

2
mṙ2 for x < 0

(79)

The Lagrangian has no explicit time dependence, so one conserved quantity is the energy. Using
the formula above, we get

E =
@L

@ṙ
· ṙ� L

= (mṙ+ eA) · ṙ�
✓
1

2
mṙ2 + e ṙ ·A

◆

=
1

2
mṙ2

=
p2

2m
since p = mṙ (80)

The Lagrangian (79) has no dependence on y (note that a dependence on ẏ does not count as
a dependence on y), so the y component of the canonical momentum pC is conserved. Using
the canonical momentum for this setup (71), we get the conserved quantity

pC,y = py + e ŷ ·A =

(
py + eAy(x, z) for x > 0

py for x < 0
(81)

Therefore, the two conserved quantities for this problem are

E =
p2

2m
and pC,y =

(
py + eAy(x, z) for x > 0

py for x < 0
(82)

Now to show that the system is a mirror for trajectories in the xy-plane. The problem statement
clarifies that the initial physical momentum is what gets mirrored. Consider two points 1 and
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2, where point 1 is right before the electron enters the region of magnetic field and point 2 is
right after the electron leaves the region of magnetic field (both locations are at x = 0�, so the
vector potential is zero at both locations).

The diagrams given in the problem statement (above) represent trajectories in the xy-plane. We
can use them to write the physical momenta p1 (right before the electron enters the magnetic
field) and p2 (right after the electron leaves the magnetic field) in terms of the angles ✓1 and
✓2:

p1 = |p1| (sin ✓1 x̂+ cos ✓1 ŷ) and p2 = |p2| (� sin ✓2 x̂+ cos ✓2 ŷ) (83)

Then, we can use the conserved quantities (82) to relate the physical momenta at these points,
p1 and p2:

E conserved =) |p1| = |p2| (84)

pC,y conserved =) p1,y = p2,y (85)

Since p1,y = p2,y, we have

|p1| cos ✓1 = |p2| cos ✓2
cos ✓1 = cos ✓2 since |p1| = |p2|

✓1 = ✓2 since ✓1 and ✓2 are both between 0 and ⇡ (86)

Therefore, if p0 ⌘ p1 = p2 and ✓ = ✓1 = ✓2, we can write the physical momenta p1 and p2 as

p1 = p0 (sin ✓ x̂+ cos ✓ ŷ) and p2 = p0 (� sin ✓ x̂+ cos ✓ ŷ) (87)

Therefore, the initial and final momenta are mirrored over the x-axis, as mentioned by the
problem statement.

(d) We use the conserved quantities we found in part (c). Let xd be the penetration depth, i.e.,
the maximum x-coordinate in the particle’s trajectory. At the penetration depth, the particle
turns around in the x-direction, so the x-component of the momentum is zero:

pd,x = 0 (88)

Since the particle’s trajectory is assumed to be in the xy-plane, by part (b), the physical mo-
mentum at the penetration depth is in the y-direction. Now, we apply both conservation laws
we found in part (c) to derive an equation for the y-component of the physical momentum at
the penetration depth:

Conservation of energy :
Since the energy E = p2

/(2m) is conserved, the magnitude of the momentum, which we call p0,
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is conserved throughout the trajectory. Therefore, the physical momentum at the penetration
depth is

pd = ±p0 ŷ (89)

Note the ± sign, which reflects the fact that the electron could be moving either up or down at
the penetration depth. The + sign corresponds to the rightmost trajectory in the figure above
(electron moving in the +y direction at the penetration depth), while the � sign corresponds
to the leftmost trajectory in the figure above (electron moving in the �y direction at the pen-
etration depth).

Conservation of the y-component of the canonical momentum:
Before the electron enters the magnetic field, the canonical momentum is equal to the physical
momentum. By (82) we get that the y-component of the canonical momentum just before the
electron enters the magnetic field is

pC,1,y = p1,y = p0 cos ✓ by (87) (90)

At the penetration depth, the y-component of the canonical momentum contains a contribution
from the vector potential. By (82), we get that the y-component of the canonical momentum
at the penetration depth is

pC,d,y = pd,y + eAy(xd, 0) (91)

We have set z = 0 since the particle is in the xy-plane.

Since pC,y is conserved, we can set these two quantities equal to one another to get

p0 cos ✓ = pd,y + eAy(xd, 0) (92)

We can now combine (89) and (92) to get a single equation that can be solved for xd in terms
of p0:

p0 cos ✓ = ±p0 + eAy(xd, 0) (93)

Recall from the discussion above that the upper sign (+) refers to the rightmost trajectory in
the figure, and the lower sign (�) refers to the leftmost trajectory in the figure.

We now need to find the vector potential for the given magnetic field B = G (x̂ z � ẑx). Recall
that B = r⇥A, so for A = ŷAy(x, z), we have

B = r⇥A =

✓
x̂

@

@x
+ ŷ

@

@y
+ ẑ

@

@z

◆
⇥ ŷAy(x, z)

= �x̂
@Ay

@z
+ ẑ

@Ay

@x
since x̂⇥ ŷ = ẑ and ẑ⇥ ŷ = �x̂ (94)

Matching this to the given magnetic field, we get

Gz = �@Ay

@z
and �Gx =

@Ay

@x
(95)

This means Ay is given by

Ay(x, z) = �G

2

�
x
2 + z

2
�
+ constant (96)

Since Ay is zero for x < 0 and since the problem tells us the magnetic field has no z-component
at z = 0, continuity of Ay requires that the constant of integration be equal to zero. (If the
constant were not equal to zero, the circulation of A over a rectangular Amperian loop in the
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xy-plane centered at x = 0 would be nonzero. This would imply by Ampere’s law that the
magnetic flux through that loop would be nonzero, implying that the z-component of B is
nonzero at z = 0—a contradiction with the problem statement.) This means that we have

Ay(x, z) = �G

2
(x2 + z

2) (97)

We can now plug this into equation (93):

p0 cos ✓ = ±p0 �
eG

2
x
2

d
(98)

Solving for x2

d
and using the fact that e = �|e|, we get

x
2

d
=

2

eG
(±p0 � p0 cos ✓) = � 2p0

|e|G (±1� cos ✓) (99)

The last step to solve for xd is to take the square root. In order to get a reasonable answer,
we need to make sure we are taking the square root of a positive number. p0 and |e| are both
defined to be positive, so it all depends on the sign of G.

If G > 0, then x
2

d
is only positive if we take the lower sign (�) of the ± symbol. Recall

from above that this corresponds to the leftmost trajectory in the figure above. Once we do
this, we can solve for xd:

x
2

d
= � 2p0

|e|G (�1� cos ✓) =
2p0
|e|G (1 + cos ✓)

G > 0 : xd =

s
2p0
|e|G (1 + cos ✓) (leftmost diagram) (100)

If G > 0, then x
2

d
is only positive if we take the upper sign (+) of the ± symbol (note that

1�cos ✓ � 0). Recall from above that this corresponds to the rightmost trajectory in the figure
above. Once we do this, we can solve for xd:

x
2

d
= � 2p0

|e|G (1� cos ✓) =
2p0

|e| |G| (1� cos ✓)

G < 0 : xd =

s
2p0

|e| |G| (1� cos ✓) (rightmost diagram) (101)

If you wanted to solve this problem assuming the electron was relativistic, in part (a) you would use
the contribution to the Lagrangian of a relativistic free particle

Lrel = �mc
2

r
1� ṙ2

c2
=) L = �mc

2

r
1� ṙ2

c2
+ e ṙ ·A (102)

The canonical momentum is then (using the relativistic physical momentum p = �mv)

pC,rel =
1q

1� ṙ2

c2

mṙ+ eA ⌘ �mṙ+ eA = p+ eA (103)

meaning that (71) still holds. Applying the same formulas as before, you would get the relativistic
Hamiltonian

Hrel = �mc
2 =

p
(pc)2 + (mc2)2 (104)

This is also equal to the relativistic energy of the electron. Other than that, parts (b), (c), and (d)
are essentially the same as in the nonrelativistic version.
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