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p, dispersions are degenerate, and they disperse the same way as the s state
(Why?). Of course, atoms could contain both s- and p-orbitals, in which
case we have to include them both in our model. These states can also mix
to form a more complex dispersion.

The generalization to three dimensions is simple. The equation for the
amplitudes are

ih%C’(x, y.z,t) = BgC(z,y.2,t) — A, C(x + b,y.z,t) — A,C(x — b,y.2, 1)

0
- A,C(x,y+b,2,t) — A,C(x,y — b, 2, 1)
- Azc(fﬂa% Z+ bvt) - AyC(IL‘,y,Z - bvt)7
(1.172)

where we have assumed a cubic lattice with a lattice spacing of b, but have
assumed for generality that the matrix elements are different for the electron
hopping in different directions. The energy spectrum is given by

Ey = Ey — 2A, cos kb — 24, cos kyb — 2A, cos kb, (1.173)
while the amplitudes are given by

C(z,y,2,t) = e~ Frtlhemiker, (1.174)

1.5.2 Spin Waves

A magnetic Hamiltonian that can describe ferromagnetism is the ferromag-
netic spin-1/2 Heisenberg model, where the nearest spins interact via a spin-
spin interaction

H=-JY o onp. (1.175)

For simplicity, I have absorbed the factor (h/2)? in the coupling J, and
o = (04,0y,0) is the vector made of the Pauli matrices. The Hamiltonian
is for a one-dimensional chain of spins, but you can easily generalize it to
higher dimensions. First, define the raising and the lowering operators

T i +Y
ot = w (1.176)
T _ ;Y
o = (o)t = w (1.177)
Remember that the Pauli matrices are Hermitian and that o |+) = 0,

ot|=)=1|4),07 |-) =0, and 6~ |+) = |-). Now, the interaction for a pair
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of spins can be written as
Op - Optl = 2[ n+1 +o, O-T—ll,——‘rl] + o, Jn—i—lv (1'178)

where we have used the fact that the Pauli matrices belonging to distinct
sites commute. The interaction can also be written in terms of a permutation
operator P, ;11 that permutes the spins on the sites n and n + 1. To check
this, define the kets for two spins as |+, +), where the first entry is for the
first spin and the second entry is for the second spin. Then,

2l oniy +onoh] +oioi) [++) = [+4) (1.179)

(2[ n+1 +op, O-r—t—i-l] +o Un—i-l) | _> = ’__> (1.180)

(2[ Opi1+ 0, Un+1] to 0n+1) |[+—) =2]—4) — |+—), (1.181)

(2o} o +onola] + 0507 ) =) = 2[+-) — |—+) . (1.182)
Therefore, as announced earlier,

O Ont1 =2P, 1 — 1. (1.183)

What is the ground state of the ferromagnetic Heisenberg model? Since
the coupling constant J, also called the exchange constant, is positive, a
pair of nearest neighbor spins like to be parallel to the each other. So,
perhaps, the groundstate is that state in which they are all lined up parallel
to each other. This is clearly an infinitely degenerate state because it does
not matter which direction in space they point as long as they are parallel to
each other. Let us check that the assumed state is the lowest energy state.
Note that the Hamiltonian acting on the presumed ground state is

—J> @Puppr— D+ ++..) =—IN|+++...). (1.184)

n

The state |+ + +...) is definitely an eigenstate; physically it is clear that it
is also the lowest energy state, but, with a little bit more effort, you can also
show that there are no other eigenstates of energy lower than —JN, where
N is the total number of spins in the lattice. As the temperature is raised,
thermal fluctuations will create excited states, which will disorder the spins.
There will be a temeperature T, at which the system will loose its average
magnetization and a phase transition will take place. It can be rigorously
shown that 7. = 0 for dimensions d < 2, but it is finite at d = 3. This proof
is slightly off our track, so I won’t give it to you here.
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What do the excited states look like? Let us redefine the zero of energy
by subtracting the ground state energy, so that

H—Ey=-2]Y (Pans1—1). (1.185)

It is easy to guess that the first excited state would be one where one of
the spins is flipped. We need to invent a nice notation to denote this. For
example, if the 4th spin is flipped, we will label that state as

lrg) = [+ ++—+++...). (1.186)

What is the action of the Hamiltonian on this state? If the permutation
operator does not involve the 4th spin, the state is unchanged. If it involves
the 4th spin, it will either permute it with the spin on the right, or on the
left, so that

Psy|ra) = |23) , (1.187)
Py |z4) = |zs) - (1.188)

The terms in the Hamiltonian that survive are
[—2J(P34 - 1) - 2J(P45 - 1)] ’l‘4> =4J |.CC4> —2J ’$3> —2J |.CC5> . (1.189)
In general,
H|x,) =4J |xyn) — 2J |xp41) — 2J |Tp—1) . (1.190)

This is identical to the problem we solved for an electron in a periodic lattice.
The schrodinger equation is given by

ih%Cn(t) = (n|H|n') C(t), (1.191)

n/

where the only matrix elements of the Hamiltonian are

Hy = 4J, (1.192)
Hpni1=Hyo1, = —2J. (1.193)

The set of linear difference equations can once again be solved by the choice

1 . .
Ch(t) = \/—Ne—“mne—”ft/ 3 (1.194)
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Then, the energy spectrum is given by
Ex =4J(1 — coskb). (1.195)

The definite energy solutions correspond to waves of a flipped spin whose
amplitude at a given site n is determined by the wavevector k lying within
the first Brillouin zone between =" and 7. The energy dispersion at long
wavelengths is that of a free particle, a magnon, of an effective mass meg =
n%/(4Jb%).

Once we start examining the problem of two flipped spins, we discover
that the spin waves interact when they approach each other. The interaction
may in fact give rise to bound states. Although the two spin wave problem
can still be solved eaxctly with some effort, we may argue that if there is
a small density of such excited states, or spin waves, at low temperatures,
they can be approximated to be independent. Such an independent particle
approximation reproduces many low temperature properties of ferromag-
nets. In the independent particle approximation, the excited state energy
e(ki, ka,...) is then given by

E(kl,kg,...) ~ B By . (1.196)
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Bose-Einstein Condensation in 1, 2 and 3 dimensions for massive and massless bosons
in a box

I. MASSIVE BOSONS

Consider a gas of massive, non-interacting, non-relativistic, identical, spin-0 bosons. The total number of bosons
in a given state with energy e is given by

N = [ atgan = [ nbiede 1)

where
_ 1
n(e) = Bl —1 (2)
is the quantum distribution function for bosons, and
dN

is the ”density of states” function. For a particle in a box of side length L, the contained modes are quantized by the
condition that the wave function vanish at the walls, ¥(x,y,z=0)=¥(x,y,2=L)=0. Thus for each spatial dimension i,
we have the condition

n;m
k=7 (4)
In 3D:
dN  dN dn dn
D = == 4 2—
3p(€) de dn de o de (5)
For a massive particle in the box the energy is quadratic in the momentum,
1 h? h27? 22
€= %(pr +p,° +p.%) = %(sz + k24 k) = 5T (ne® +n,? +n.?) = an (6)
thus
L L /2
n= 2me, and dn = e ?mde (7)

Combining terms into the density of states,

Dap(e) = 4772”2156(%\/?) - QW(%)?’(zm)%ﬁ (8)

The total number of particles can now be expressed as

2w 1 L \3 s [ Ve
Nop = 5 (57) <2m)2/0 e 1%

2V s [ e 1
h3 m 0 eﬁ(efu)l_efﬁ(e*u)de

_2Vo, s [TV (NS e
—F@m)g/o eﬁ(em(;e )de

2nV 2 > = —Bl(e—p
:%(gm)é/o \/g(;e Bl I))de

= %(Qm)% /Ooo ﬁ(; efﬁleeﬁlﬂ)de




where the factor of 8 has been introduced since we are including only the positive values of n, and thus only the
first quadrant of the 3D sphere in n-space. The last sum on the right is a polylogarithm function, also called the the
weighted Zeta function (weighted by the exponential factor). We have used the expansion condition e Plemm) < 1,
which is validated by the physical mandate that we do not obtain negative values for 7i(e). It follows then that we
posit the restriction € > pu.

From the expression it can be seen that N3p is a maximum at u=0, which is therefore when the condensate occurs.
The sum can be evaluated and we arrive at the condensate phase transition temperature,

V 2mm. 3 <= 1 V 2mm. 3 h? Nsp \3
Nsp=-—(—)°? -~ —(—)%(2.612 = T. ~ ( ) 10
30 h3( 3 ) ;l% h3( 3 ) (2612) 2maky \2.612V (10)
N
<«(3)
For massive bosons in 2D we follow the same procedure. The density of states is
dN  dN dn dn
D = 2mn—. 11
(&) = G = nde T M (11)
The energy has a similar form as previously
1 9 9 %
— = 12
€= 5P +py7) = 55 (12)

Plugging into the integral for Nop, we note that the density of states here does not depend on the energy. Consequently
the integral is over only the distribution function, with a factor of 1/4 that comes from dealing with only the first
quadrant of the 2D sphere in n-space.

2w L\22m [ 1 2rmA o= eflr
NZD_Z(E) 7/0 eBle—m) _q de = h23 Z (13)

For the condensate to occur, =0 and the above expression diverges, ((1)— co. Hence, the condensate does not occur
for massive bosons in 2D.
Lastly for the 1D case, the density of states is simply

dN  dN dn dn
D = =(1)— 14
1009 =G = dnae - Ve (14)
The energy is, again, the same as above
1 9 h2m?
= — = —-— 1
‘T om (p”) omL2" (15)

So the total number is

L o— [T 1]\ 2rm eﬁl”
Nip =3, Qm/o Al — 1% 2h V5 ; (16)

There is a factor of 1/2 from dealing with only positive n values. Again, this expression is non-physical for u=0, so
the condensate for massive bosons in 1D does not occur.

II. MASSLESS BOSONS

For massless bosons by contrast, we must express their energy relativistically. Thus from the relation
€= clp| (17)
it is evident that the energy is linear in momentum. This alters the conditions for the BEC to occur. In every case
the energy is given as
el

nm
= chlk| = ch— — = — 1
e=chlk| =c¢ T n - (18)



For 3D the density of states is

dn L \3
_ 201 L\T 2
Dsp(e) = 4mn T 47T(ch7r) € (19)
so the total number is
Aw ¢ L \3 [ €2 81V =Pl _ 8V 81V
Nyp = -2 (— = T 11202 20
PR chw) /O Al =1 = (chB)3 &= 13 "7 (chp)? (8) ~ (chB3)? (20)
Now we can calculate the phase transition temperature for massless bosons in 3D:
NgD % ch
T. ~ <7) —. 21
8wV (1.1202)/ ky (21)
In 2D the density of states is
dn L \2
Dap(e) =2 =2 ( ) 22
2p(€) = 2mn e de T chm ¢ (22)

Note that now the 2D density of states does depend on the energy. The total number of particles is
2w L \2 [ € 2rA ePln _ 21A 21A w2

Nop = =— (7) / = = 2) = — 23

Ty Nenn) ), ePlem —1 de = (ch3)? Z 12 eh)? hﬁ) 2¢(2) (ch3)? () (23)

This result shows that massless bosons in 2D do indeed form a condensate, whereas massive bosons in 2D do not.
The temperature of condensation here is

- 3N2D %Ch
T = ( Am3 ) Ky (24)

Finally, for the 1D system of massless bosons we have a density of states that is independent of energy, just like the
2D massive boson system.

dn L
D = —. 25
10(€) = de  chm (25)
Again, the integral diverges for u=0,
L > 1 6’61“
Nip = = (1) = 26
P 2ch7r/0 efle=m) —1 de = chz 1" 0 ( )= o0 (26)

and thus in the 1D massless case we find the same condition as the massive bosons in 1D, i.e., the condensate is
forbidden in this geometry.

IIT. CONCLUSION

For the particle-in-a-box model, BEC’s occur for both massive and massless bosons in 3D. They occur only in the
massless case for 2D, and never for 1D. This model can in principle be applied to higher spatial dimensions whereupon
evaluation of the total number of particles would be an integral of the form

o a2 4 .
N,p N/O i Cem—] 1de 150 <(§) (Massive)

o (g-1) N
NqD NA de un—0 C(q) (MCLSSZGSS)

where q is the dimension of the space.
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WRITTEN COMPREHENSIVE EXAMINATION FOR THE MASTER’S
DEGREE AND QUALIFYING EXAMINATION FOR THE PH.D. DEGREE
DEPARTMENT OF PHYSICS

Thursday, March 29, and Friday, March 30, 2001
PART I - THURSDAY, MARCH 29

Important — please read carefully.
The exam (8 hours) is in two parts:
Part1 Quantum Mechanics, Thermodynamics, Statistical Mechanics
March 29 7 Problems — DO ALL PROBLEMS.
9:00-1:00 This part will be collected at the end of four hours. '“' -
Each problem counts for 20 points; the total is 140. - - .
PART 2 Electromagnetic Theory,’I‘hermodyﬁéﬁﬁcs,Statistical Mechanics
March30 7 Problems— DO ALL PROBLEMS.
9:00-1:00  This part will be collected at the end of four hours.
Each problem counts for 20 points; the total is 140.
Instructions
1) This is a closed book exam and calculators are not be used.
2) Work each problem on a separate sheet of paper. Use one side onlz‘.

3) Print your name and problem number on EACH AND EVERY page. (Note:
Pages without names may not be counted.)

4) Return the problem page as the first page of your answers.

5) If a part of any question seems ambigubuéi toyou,state clearly what your interpretations and
answer the question accordingly.



1. Quantum Mechanics.

Consider a system of three spin-1 /2 moments, S;, Sa, S3. The permuta-
tion operator Py, exchanges spins 1 and 2:

Py |01,02,03) = |02,01,03)

where 0123 = :I:% are the eigenvalues of 57, 5%, S§. The permutation operator
Pyo3 performs a cyclic permutation on spins 1,2, and 3so that2 — 1,1 — 3,
3— 2.

Pra3 |03, 02,03) = |02,03,01)

(a) Express Pj, in terms of the spin operators S;, Ss.
(b) Express Pyo3 in terms of the spin operators S;, Sz, S;.



2. Quantum Mechanics.

An electron is injected into a region where there is a constant magnetic
field of magnitude B. At ¢t = 0, the direction of the electron’s motion is
perpendicular to the magnetic field, and it is completely polarized so that its
spin is definitely along the direction of the beam.

Let © be the angle between the electron’s momentum and the expectation
value of its spin. At ¢t =0, © = 0. What is © as a function of the time ¢?
[Calculate the time-dependence of the momentum classically.] Express your
answer in terms of the gyromagnetic ratio g of the electron. Leave g arbitrary
— don’t set it exactly equal to 2. '



3. Quantum Mechanics.

A neutron (mass M) scatters off a very heavy. nucleus, and the force
between them is given by a Yukawa potential: :

e Hr

Vi) =V

ur

(a) Imagine you could find the solution 4(r) to the time-independent
Schrodinger equation (with an incident wave in the +2z direction) with this
potential for positive energy E. Write a formula for the scattering amplitude
in terms of this wave function. Don’t try to calculate ¥(r). Define any
symbols you introduce, other than those in V'(r) above and natural constants.

(b) What is the first Born approximation to the scattering amplitude
f(6,9)?

(c) What is the total cross section in the limit that the scattering neutron
has zero kinetic energy?



4. Quantum Mechanics.

The simplest approximation for the Hamiltonian of an electron in a hy-

drogen atom is
g P ke
2m T
where o = 1/137.036 is a dimensionless constant. In cgs units, the electric
charge e is related to o by e? = ahc. :
(a) In this approximation, what are the energy levels of the hydrogen

atom and what is the degeneracy of each level?

(b) There are some corrections to H, that give rise to a small correction
to the energy levels called the fine structure. What are the effects that give
rise to the fine structure? Just describe them briefly — don’t try to remember
the formulas. What is the order of magnitude of the fine structure splitting
compared to the splitting between the eigenvalues of H,? Why?

(c) Consider the states in the first excited level with the approximation
H, above. Into how many levels are these states split, and what is the
degeneracy of each level? What are the quantum numbers of the states in
each level?

(d) There is a further splitting called the hyperfine structure. What is the
effect that causes the hyperfine structure? Here too just describe it briefly.
Into how many levels is the ground state level (i.e. all the states in the lowest
energy level when hyperfine structure is ignored) split by the hyperfine effect,
and what is the degeneracy of each level? Why is the hyperfine splitting small
compared to the fine structure splitting?



5. Quantum Mechanics.

A particle of mass m is constrained to move between two concentric im-
permeable spheres of radii r = a and r = b. There is no other potential.
Find the ground state energy and normalized wave function.



6. Statistical Mechnics and Thermodynamics

Calculate the collision frequency for the collisions between the molecules
of a gas and a fixed sphere of diameter D. The molecules have an average
diameter d. The gas has a temperature T.



7. Statistical Mechnics and Thermodynamics
This is an egfay question. Answer two of the following three questions.

(a) You are asked about the second law of thermodynamics, and you give
one of the formulations, that there is no process the sole effect of which is
the conversion of heat into work. The inquirer then points out that a steam
engine converts heat into work. Explain how this is not a violation of the
second law of thermodynamics. Your explanation should include an analysis
of the steam engine, and a discussion of heat engines in general.

(b) You read an article in a physics journal in which a group of researchers
announce that they have cooled a system to absolute zero. Discuss why one
ought to be skeptical of this claim. Invoke the appropriate laws of thermo-
dynamics.

(c) Explain, using the laws of thermodynamics, why a substance cannot
have a negative heat capacity.
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8) If a part of any question seems ambiguous to you, state clearly what your interpretations and
answer the question accordingly.



8. Electricity and Megnetism

One hemisphere of a metallic sphere of radius R, is kept at a potential V
while the other hemisphere is kept at a potential of —V.

(a) What is the approximate potential and electric field a far away dis-
tance r from the center of the sphere. Keep only the leading contribution in

R/r.

(b) Suppose the the potential V varies in time as Voe ™t where wR < c.
What is the electric field far away from the sphere? Again keep only the
leading contribution in R/r. (If you can’t figure out an exact expressmn
then explain the generic behavior.)



9. Electricity and Megnetism

A charged particle moves in a plane perpendicular to a magnetic field B,
which is uniform in space but varies very slowly with time.

(a) Find a relation between the momentum p, the magnetic field B, and
the instantaneous cyclotron (or gyration) radius ag of the particle’s trajec-
tory. (The radius will change very slowly in time as the B field varies.)

(b) Using Faraday’s law, derive an approximate relation between the mag-
nitude of the induced electromotive force around the orbit, the time derivative
of B and the intantaneous radius ag.

(c) Utilizing your answer to the previous parts, or otherwise, show that
p?/ B remains constant in time.



10. Electricity and Megnetism

A 7° of velocity vp decays in flight into two photons 7° — 2. Compute
the minimum and maximum values of the energies of the produced photons
as a functions of vg.
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11. Electricity and Megnetism

Consider the penetration of a magnetic field B into a conducting medium
by diffusion and convection. L

The medium obeys an Ohm’s law of the form E + v x B = nJ, where E
is the electric field, J = —nev is the current density of electrons of velocity
v and number density n, and 7 is a constant uniform scalar resistivity.

(a) Using Faraday’s law and Ampere’s law (neglect displacement current)
obtain a differential equation for the magnetic field.

(b) Now consider a simple boundary problem: the conducting medium
is located in the half-space z > 0. There exists a density gradient of scale
length L = n/(dn/dy). At t=0 a uniform field By along z is applied in
the space z < 0. Write down the differential equation for the field B,(z,?).
Identify which terms describe field diffusion (¢ o z?) and convection (t x ).

(c) Show that the solution B = [1— (kBy/D)z]™" satisfies the differential
equation in steady-state where k = (uoneL)™! and D = 1/ po.

(d) Show that in the absence of diffusion (7 = 0) a propagating field
B,(x — vt) satisfies the differential equation. Find the propagation velocity
v in terms of By and Vn.

11



12. Electricity and Megnetism
A magnetic field is given by

B= (B:ca By: Bz) = ((1 + ’7):1‘-7 (—1 + 7)?/: -2’72)

where 7 is a constant.

(a) Show that this field satisfies Maxwell’s equations and may be derived
from a scalar potential.

(b) For v = 0, find the equation for field lines, the vector potential, and
show that field lines are lines of constant vector potential. :

(c) Sketch field lines for three parameter values y=0,v=1/3, v = 1.

12



13. Statistical Mechnics and Thermodynamics

Consider a gas of relativistic, conserved bosons. The relation between
energy and momentum is
= |ple

(a) Derive the condition for Bose-Einstein condensation in three dimen-
sions.

(b) Does Bose-Einstein condensation occur in two dimensions? Justify
your answer.

(c) What is the highest dimension for which Bose-Einstein condensation
does not occur?

13



14. Statistical Mechnics and Thermodynamics

(a) What is the free energy (as a function of temperature, T, volume, V,
and particle number, N) of a ideal gas obeying Maxwell-Boltzmann statis-
tics? ,

(b) Assume that the ideal gas is made up of hydrogen atoms. Now the free
energy must include a contribution reflecting the different possible electronic
excited states of the hydrogen atoms. Show that this contribution diverges.
What cuts off this divergence in a real gas?

14
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