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e To ensure anonymous grading, use the Number Labels you are given on EACH of your
response pages, including the question page. If you run out of labels, be sure to write
the Number you have been assigned on each page.

e Return the question page as the first page of your answers.

e When submitting, please clip all pages together in question # order.

e [f a part of any question seems ambiguous to you, state clearly your interpretations and
answer the question accordingly.

desgnad Iy Laky Kirich

physics + astronomy



UCLA Physics Comprehensive Exam — Fall 2016 — Part 1

1. Classical Mechanics

Consider a pendulum made of a very heavy mass m suspended by a light wire of length / from a tall ceiling.
The pendulum is allowed to swing freely for long periods of time, and moves in both the east-west and
north-south directions.

a) (7 points) Choose a set of axes such that x is east and y is north and z is vertically upwards and assume
small oscillations to calculate the two coupled differential equations for the motion of the pendulum in a
frame rotating with angular velocity Q || z, much smaller than the pendulum characteristic frequency so
you can neglect all effects < Q2.

b) (7 points) If the pendulum starts oscillating in the x plane with zero initial velocity and initial offset xo,
use perturbation theory to obtain the first order correction to the trajectory.

c) (6 points) Find the full solution using the substitution n = x + iy and then trying a solution for the
resulting equation of motion of the form n(t) = f(t)e .
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UCLA Physics Comprehensive Exam — Fall 2016 — Part 1

2. Classical Mechanics

A ring of mass M = 0.1 kg hangs from a thread, and two beads of mass m = 0.2 kg slide on it without
friction. The beads are released simultaneously from rest at the top of the ring and slide down opposite
sides. The ring is initially motionless, but when the beads pass a critical angle 0. the ring is observed to
start moving upwards. Find the value of 6..







UCLA Physics Comprehensive Exam — Fall 2016 — Part 1

3. Quantum Mechanics

An apparatus is constructed that emits pairs of photons whose polarizations are quantum-mechanically
correlated because each pair is in the state

) = (IHa, Hg) — VA, VB /V2

where H (Horizontal) and V' (Vertical) correspond to orthogonal linear polarizations for the photons.
Each photon from the pair is collected in a separate (polarization-maintaining) optical fiber and the
output of the first fiber is sent to Alice while the output of the second is sent to Bob (corresponding to
the A and B subscripts above).

Alice and Bob each have a fancy single-photon polarization detection system that will report a result of
+1 if the measurement of the polarization finds H and —1 if it finds V. Expressed in the H, V basis, each
detector implements the measurement given by the operator

1 0
M, = |HP><HP| - |VP)<VP| = (0 _1)p
where p € {AB}.

a) (6 points) The H and V directions of each detector may be said to point along the x and y axes of
some coordinate systems that are fixed with respect to each detector. If Alice or Bob decides to rotate
their detector about the +z axis through some angle 8, the resulting measurement may be called

M, (0). Find expressions for the following four measurement operators in the H, V basis: M, (0),

Ma (5), Mo (5) and M5 ().

b) (6 points) Find the expectation value of the following operator in the state |):

W=21-M,(0)Mg (g) + M, (0)Mj (%”) + M, (%) Mg (g) + M, (%) Mg (%ﬂ)

where I is the identity matrix.

c) (8 points) The operator W is known as an entanglement witness; if (W) < 0, the state is
incompatible with a local hidden variable theory. Now consider the effect of group velocity
birefringence in the optical fibers, which would lead to a polarization-dependent time-delay. Consider
the case where the photons emitted by the source (i.e. at some position in space before they are
collected by the fibers) are in Gaussian temporal wavepackets of width t given by

L
lptemporal(t) = (ZTT TZ) 4 e 4712,

Find the relative delay between H and V necessary to give (W) > 0 for photons created in the initial
state |10). You should assume that the fibers (and therefore the birefringence-induced delays) are
identical for Alice and Bob. The following identity may be useful:

jmdt S 1 t2 (t+T1)%\ T?
» (2mt*) 2exp 172 exp 112 = exp 8.2



(a) Since M, was represented in 2x2 matrix form, we can follow that same convention and recognize the
top and bottom entries of a column vector as H and V, respectively, which we can treat as the x and y
components. This allows us to write R(6) as the standard 2D rotation matrix

__ (cosf —sinf
k@) = (sinG cose)

Giving us

M(6) = R(6)M(0)R(~6) = (COS(ZH) sin(26) )

sin(20) —cos(20)

My (0) = [Hp)(Hpl — [VAXVal = ((1) —01)A

M, (%) = [HaAXVal + [VaXHal = (2 (1))A

my  (|Hg)(Hg| + |[HgXVs| + [Vg)Hp| — [VeXVg]) 1 1 1
M (§) - V2 _5(1 —1)3
M (3_7'[) _ (=|Hp)(Hg| + |Hp){Vs| + Vg ){Hp| + [V){Vg]) _ i(—l 1)
B\s /™ V2 A

(b) Using these forms of these operators, we find
~ 1 1 1 1

W) =2-——-—-

N RN - S

(c) The state vector can now be written something like
') = (IHa, Hp, 0) — [Va, Vg, T)) /2

where the last entry denotes the delay of the temporal wavepacket. The first three terms in (W) are
unchanged, but the last two involve inner products between temporal wavepackets that are delayed by
different amounts, such as (0|T). The expectation value of the witness is

2
V2. V2 81?2

Which leads to the condition for this expectation value to be positive,

T >21 /ZIn(ﬁl_ 1).
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4, Quantum Mechanics

2
We consider a one-dimensional system with Hamiltonian H = zp_m + V, where the potential VV gives an

effective description of the physical system, and V is non-local. The matrix elements of V in the position
eigen-basis |x), for real x, is given in terms of a real-valued square integrable function u(x) which
decreases to zero exponentially as |x]| — oo,

hZ
(x|V]x') = %u(x)u(x’)

a) (4 points) Derive the integro-differential equation obeyed by a wave function Y (x) of energy E
given in terms of the wave number k by E = h%2k?/(2m).

b) (6 points) Establish the solution to the equation obtained in point 1 above for the scattering of
an incoming plane wave of wave-number k and unit amplitude in terms of a suitable Green
function G (x, x'; k). (The resulting solution is usually referred to as the Lippmann-Schwinger
equation.)

c) (6 points) Compute the reflection and transmissions coefficients, respectively 1y, t, asa
function of the Fourier transform of u(x).

d) (4 points) Verify that probability is conserved during the process so that 1,2 + £;,2 = 1



1. The Schrodinger equation for this non-local potential is an integro-differential equation,
d2 00
—@mg(:c) + u(:c)/ dz'u(x" )y (2') = k*p()

—00

2. We define the Green function G by,

d?
<@ + k2> G(z,a's k) = d(x — )
It will be convenient to choose a solution G,

eik\xfz’\

2k

Gz, 2’3 k) =

which is symmetric G(2/, z; k) = G(x,2'; k) and has only the branch proportional to ¢*® for

x > x’. The imaginary part of G is a solution to the homogeneous equation chosen uniquely

to enforce these conditions. For given energy E = h%k*/(2m), two linearly independent
solutions are given by 1, where,

[e.e]

Y (x) = eTh 4 gpk/ dr'G(z,2'; k)u(x) (0.1)

and y, is defined by,
Pk Z/ dz u(z)r(z)
We obtain ¢, by integrating equation (0.1) against u(z), and we obtain,

v o ,
Pr = —kK vy = /_OO da u(x) etk

and where,
K = / dx/ da'u(z)G(z, 2'; k)u(x) (0.2)
3. The reflection and transmission coefficients, respectively denoted r, and t, are defined
by the following asymptotic behavior,

T — —00 Cbk(l’) ~ e+ik’x+rk e—ik’x
T — 400 dr(z) = ty etk
The solution obtained in (0.1) has already been nicely tailored to this asymptotic form, as

may be seen by using the explicit expression for the Green function,

¢k<x) _ €+ikx + 290_]]1/ dr’ eik(z—x’)u(x/) + +290_];€ dr’ eik(z’—x)u<x/)
ik J_ o ik J,

Since u(z) rapidly decays as |x| — oo, we readily read off ry, ¢,

VP
T = L4

VI Ok
ty =1+ L
2k EE T



4. To verify unitarity for this self-adjoint, though non-local Hamiltonian, we decompose
K of (0.2) into real and imaginary parts:

with K, real, in terms of which the coefficients become,

 —2ik(1-K,)
ol = 2ik(1 - K,)

_ —|ve|”
orl? — 2ik(1 — )

Ly

Tk

which manifestly satisfy |rg|> + |tx]* = 1.
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5. Quantum Mechanics

Confinement of a quark anti-quark pair with masses much larger than the typical confinement scale
may be described by a non-relativistic Hamiltonian with an attractive potential which is linear in the
distance between the quarks, and given by,

h%a3
+

2
o
2u 2u

7|

where p is the reduced mass, and a > 0 is a constant related to the confinement scale.

a) (12 points) Estimate the ground state energy by using the variational method and a family of trial
wave functions depending on one parameter A > 0,

(22 —1r?) Ir] <2

Ya(m) = { 0 Ir| > 2

b) (8 points) How can the variational method be used to estimate the energy of the first excited state
with zero orbital angular momentum as well? Please give a careful explanation, but there is no need
to perform any calculations.



1. We begin by computing the norm of the trial wave function,
(0 Ty) — / Br (2 = p2)2 = ST (0.3)
r<i
and the expectation value of the Hamiltonian in the unnormalized trial wave function,

(U, | H | >—h—2/ Pr(f2r 4 r(3 1)) = P (854 Ly (0.4)
by ) — 2[“ s T T T 77{” 5 12@ .

Hence the physical expectation value of the Hamiltonian gives the trial energy,

<\I’)\|H|\I/>\> 21h2 1 5@3)\
B\ = = =+ —
<\I’)\|\I/>\> 4/,L A2 96

Minimizing the energy as a function of A > 0, we find the minimum at,

K 3 3
A= — =4 - )
0 a K (5> (06)

and the corresponding energy,

h22
g, _ 8 Ma

= TE (0.7)

2. The variational approximation to computing the energy of the ground state and first
excited state in the s-wave channel is to use a family of a pair of mutually orthogonal
normalized trial wave functions functions 1/1&” and 1/1&2) where A\ may stand for a single trial
parameter, or an array of trial parameters. Thus, we should have,

WlY)) = b (08)
for all values of A\. We then evaluate the reduced Hamiltonian projected on this subspace,
1Y = (03| H¢)) (0.9)

and diagonalize H;j to give two eigenvalues E/(\O) < E/(\l).

)

The ground state energy is then

determined by minimizing E/(\O as a function of A. If this minimum gives a unique value for
A = ) then the first excited state energy is ES)) If the value of A is not uniquely fixed at

)

the minimum, then one can further minimize the value of E/(\1 on this subspace.

Generally, the more parameters are available for variation, the more accurate the approx-
imation can become. In the present case the trial wave functions, in the s-wave state, may
be taken to be orthogonal polynomials of r.
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6. Quantum Mechanics

A particle of mass m is constrained to move on a ring of radius R lying in the xy plane. The system is in
its ground state. A time-dependent potential is applied to the particle of the form:

0 t<o0
V(}’: t) = { yVOe—t/T t>0

(20 points) At long times t /T > 1 the system is observed. Find the probability of finding it in each of the
excited states of the unperturbed Hamiltonian.

You may assume that Vj is sufficiently small that only first-order perturbation theory is necessary.
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7. Quantum Mechanics

Consider a particle of charge e, mass mg, constrained to move on the surface of a sphere of radius R (we
do not consider spin in this problem). There is a uniform magnetic field B.

a) (10 points) Write the Hamiltonian in terms of the momentum and angular momentum operators,
neglecting terms second order in the field.

b) (10 points) Find the energy levels of the system.

1
(Hint: work in the gauge A = EB XT)
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September 13th, 2016 (Part 2) 9:00 — 1:00 pm

Part 2: Statistical Mechanics and Electromagnetism

7 Total Problems/ 20 Points Each / Total 140 Points

e Closed book exam.

e Calculators not allowed.

e Begin your solution on the problem page.

e Use paper provided for additional pages. Use one side only.

e To ensure anonymous grading, use the Number Labels you are given on EACH of your
response pages, including the question page. If you run out of labels, be sure to write
the Number you have been assigned on each page.

e Return the question page as the first page of your answers.

e When submitting, please clip all pages together in question # order.

e [f a part of any question seems ambiguous to you, state clearly your interpretations and
answer the question accordingly.
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1. Statistical Mechanics

A molecular zipper. Consider the following simple model for the melting of DNA. Two unbreakable
molecular strands are coupled by N links. See the figure below. Each link can be in one of G + 1 states.
Of these states, G are unbound (open) and have energy €, and one is bound (closed) and has energy 0.
You must assume that links unbind sequentially. In other words, the only states of the system with
finite energy are those in which all links to the right of a given link are unbound. Letn < N — 1 be the
number of unbound links.

W

Closed

Open

a) (5 points) Find the partition function of the system

(n)
N
thermodynamic limit N — oo. Show that there is a critical temperature where this mean fraction
changes in the thermodynamic limit.

b) (10 points) Find the mean fraction of unbound links y = — at temperature T in the

c) (5 points) Compute the fraction of completely unzipped (n = N — 1) zippers in a noninteracting
solution of these molecules as function of temperature T.
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2. Statistical Mechanics

You have 3 concentric spheres with radii R1<R,<Rj3. The sphere at R; is maintained at temperature T;
and the sphere at R3 is maintained at temperature Ts. Assume that the spheres are black and that the
only heat transport occurs via photons.

a) (4 points) Draw a diagram (or two) and label it with the variables you will use to solve the problem.
b) (13 points) Find the steady-state temperature T, of the sphere at R,.

c) (3 points) Evaluate the interesting limiting cases of your result from (b).
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3. Statistical Mechanics

a) (10 points) Find the temperature dependence of the heat capacity at constant volume (Cy, ) for an

ideal Bose gas below the BE condensation temperature.

b) (10 points) Give an expression for the condensation temperature T in terms of N, V. Definite

integrals which are just numerical factors may be left indicated as such.
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4. Electromagnetism

A thin spherical shell of radius R is uniformly charged so that the charge per unit area on the surface is o.
You take a sword and chop off the very top of the sphere, so that there is a hole at the apex with polar
opening angle a, as shown below.

a) (10 points) If the angle a is small (so that the diameter of the opening is much smaller than the radius
of the sphere), what is the electric field at the center of the sphere (magnitude and direction)?

b) (10 points) What is the electric field at point P in the diagram (in the opening, at the location where
the apex of the sphere used to be before | sliced off the top)?



SOLUTION: We solve this by superposition. We superimpose the electric field generated
by two different charge distributions: (1) E; due to a complete spherical shell with uniform
charge density ¢ and (2) E> due to a uniformly negatively charged spherical cap (charge
density o) with radius of curvature R and with extent in the polar angle a. Adding these
two together gives me the charge distribution shown in the figure.

The first of these two objects produces no electric field at the center of the sphere (in fact, it
produces no electric field for any r < R. So we just need to deal with the negative spherical
cap.

The problem statement lets us consider the leading order contribution from the cap (we are
told that the cap is very small compared to R). The leading term in the electric field from
the cap will be the monopole term; so we can treat the field like that from a point charge
located at the apex of the sphere. The total charge of the cap is the surface area times —c.
The surface area of the cap is:

27 «
A= RZ/ dcp/ sin0d6 = oc27tR*(1 — cosa) ~ ma*R>
0 0
The field at the center of the sphere is then:

oA
N o——>2
47e,R

The field points up, toward the opening.

SOLUTION: The field at point P is again the superposition of the fields from the two charge

distributions. For whole spherical shell, the electric field just above the sphere at point P is:

N
El,above =Z—
€o

You can get the above from knowing the field of the whole sphere is the same as if a point

charge of total charge 0471 R? was sitting at the origin (center of the sphere). You can also get
it from the jump condition for E at the surface.

Z- (El,above - El,below) =
0

And you use Ej pelow = 0; the field below is made zero by contributions from elsewhere on

the sphere.

The field at point P due to the cap can be obtained the same way. If the cap is small, so that

we can treat it as a small disk/plane, then the field just above and just below the plane is:

g

2

EZ,above = _26 Z
0

and o
E = —72
2,below 7 c

If the cap were large, this answer would not be correct — the cap would have too much
curvature and the field would not be the same as an infinite plane (e.g. take the limit of the
cap being the whole sphere, and you get zero electric field under the surface at point P).

We add these two together to find the same field above and below point P (we had better as
there is no charge there to introduce a discontinuity!):

g

Ep=-—2
P Zeoz
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5. Electromagnetism

A permanent magnet is created from a hollow cylindrical piece of magnetic material with inner radius a,
outer radius b, and length L. It is given magnetization

where p is the distance from the axis of the hollow cylinder and (7) is the azimuthal unit vector.

42

a) (10 points) Where are the bound currents in this magnet and what are their values?

b) (10 points) What is the magnetic field produced by this magnet ?

Useful formulas:

oY 10y oY
Vl/) = eq ap +ezpa(p+eg 9z
10 104, 0A4A;
\Y A_;%(pAl)-I-E%-I-E
B 10A; 04, 0A, 04, 1/0 aAl)
VXA_el(pafp az)+ez<az ap)+83p(ap(pA2) do



SOLUTION: The bound currents are given by:

jBZVXM

in the volume and

at the surfaces. Looking at the expression for the curl in cylindrical coordinates (see equation
sheet), we see that V x M is zero in the bulk of the magnet, so jg is zero. We have four
surfaces to deal with: (1) at the inner cylindrical surface, p = a, we have i1 = —p (always the
normal vector that points OUTWARD from the material), (2) at the outer cylindrical surface,
p = b, we have i1 = p, (3) at the bottom surface, z = 0, we have 71 = —Z, and (4) at the top
surface, z = L, we have 71 = Z. Looking at M X 7 at these four surfaces we have:

M,z p=a

— M., —b
Ky = v P

—MO%p z=0

I didn’t ask you to, but you can show that the total current flowing through each surface is
the same (as we should expect).

SOLUTION: Based on the currents above, this is a toroidal solenoid. You can take this
distribution of currents and solve for B in the usual way (Ampere’s law will work). But
the easiest way to do this problem is to note that H = 0 everywhere. This is because the
free current is zero everywhere and V - M = 0 (can see this from the cylindrical divergence
formula on the equation sheet or by the fact that lines of M don’t start or end anywhere). So
if H = 0 then:

B = jto(H+ M) = oM = oM, —¢

IS

The field is zero outside the magnet (M is zero there). You'll get the same answer applying
Ampere’s law (and symmetry arguments) to the currents given above.
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6. Electromagnetism

A plane wave with intensity <S> J/m?%s is incident on a totally reflecting, plane surface at an angle 0,
where 0 is measured relative to the plane normal.

a) (8 points) Find the radiation pressure normal to the surface.

b) (8 points) Find the total radiation force produced by this plane wave when incident on a perfectly
reflecting sphere of radius R.

c) (4 points) Find the total radiation force produced by this plane wave when incident on a perfectly
absorbing sphere of radius R, and compare with the result of (b).
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7. Electromagnetism

Find the total energy radiated in the head-on collision of a non-relativistic particle of charge g, velocity
Vo against a fixed target of charge Q (gQ > 0). Write your result in terms of g, Q, vo.
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