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10. (Electromagnetism)

Consider the e↵ect of a birefringent medium with a complex linear susceptibility � on a linearly polarized
electromagnetic wave, ~E = E0✏̂ cos(kz � !t), with E0 the electric field amplitude, ✏̂ a unit vector in the
direction of the polarization, k the wave number, and ! the angular frequency. Near a resonance !0 in
the medium, the susceptibility has a complex Lorentzian lineshape given by

�(�) = �0


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1 + 4�2
� i

1

1 + 4�2
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where �0 is the amplitude of linear susceptibility and � = (! � !0)/�0 is the detuning from resonance
in units of the resonance width �0. For �0 ⌧ 1 the complex index of refraction is approximated by
n ⇡ 1 + �/2.

(a) Discuss qualitatively what e↵ects the real and imaginary parts of the susceptibility can have on the
plane wave.

(b) On resonance (� = 0) what is the absorption length L, defined as the distance where the electric
field amplitude is 1/e smaller than the initial value the wave had when it entered the medium?

(c) In the presence of a magnetic field, the resonance in a birefringent medium splits, giving two di↵erent
detunings

�± = �±�B

where the +,- refer to the left- and right-handed circular polarizated waves. Consider a wave that
initially has linear polarization. After a distance l in the birefringent medium and on resonance ,
what is the angle ✓ that the polarization has rotated? Sketch the angle of rotation ✓ versus �B .
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Solution: Solution by Jonah Hyman (jthyman@g.ucla.edu)

At first glance, there seems to be a lot going on in this problem. The key is to take the parts one
at a time, since each part relies only on a small portion of the given information.

(a) The problem tells us that the complex index of refraction is approximately n ⇡ 1+�/2. (Note
that we are meant to assume �0 ⌧ 1.) The index of refraction is related to the wavenumber of
a plane wave via the speed of the wave:

! = vk =
ck

n
where v =

c

n
is the speed of the wave (336)

v is properly defined as real, but the relationship ! = ck

n
is also true for complex k and n.

Therefore, the complex wavenumber of the plane wave is
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So the real part of the susceptibility a↵ects the real part of the wavenumber, and the imaginary
part of the susceptibility a↵ects the imaginary part of the wavenumber. The complex version
of the electric field is

Ẽ(r, t) = "0 ✏̂ e
i(kz�!t)

= "0 ✏̂ e
i((Re(k)+i Im(k))z�!t)

= "0e
� Im(k)z

✏̂ e
i(Re(k)z�!t) (339)

so the real electric field is

E(r, t) = Re
⇣
Ẽ(r, t)

⌘
= "0e

� Im(k)z
✏̂ cos (Re(k)z � !t) (340)

From this equation, we can tell that

• Changing the real part of the electric susceptibility changes the real part of the wavenumber
Re(k). This changes the speed of the wave, defined as v ⌘

k

!
. For constant z, this can also

be thought of as a phase shift in the wave (but this phase shift is not spatially constant).

• Changing the imaginary part of the electric susceptibility changes the imaginary part of the
wavenumber Im(k). This changes the spatial attenuation of the amplitude of the electric
field, which is controlled by the prefactor e� Im(k)z. In other words, the imaginary part of
the electric susceptibility describes absorption of electromagnetic waves in the medium.

(b) If � = 0, the electric susceptibility takes a simpler form:

�(0) = �i�0 (341)

By (337), we can use this to write the complex wavenumber k:

k ⇡
!

c

⇣
1 +

�

2

⌘
=

!

c

⇣
1� i

�0

2

⌘
(342)

Looking at the prefactor e
� Im(k)z in (340), we can see that the electric field amplitude is

attenuated by a factor 1/e when z = 1/ Im(k). Therefore, the absorption length L is defined
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by L = 1/ |Im(k)|. (The absolute value is there because lengths are always nonnegative.) In
this case, using (342), we find that it is equal to

L =
1

|Im(k)|
=

1���!�0

2c

��

L =
2c

!�0
(343)

(c) Most birefringence problems follow a specific pattern:

How to solve birefringence problems:
Step 1. Diagonalize the dielectric matrix to find the principal axes, i.e., the coordinate sys-
tem in which the dielectric matrix is diagonal.
Step 2. Write the polarization of the incident electromagnetic wave in terms of the princi-
pal axes.
Step 3. For each principal axis, there is a (possibly di↵erent) dispersion relation that re-
lates ! and k, typically involving the index of refraction n. Use this dispersion relation
(and the fact that the frequency ! is spatially constant) to find the wavenumber for each
principal axis.
Step 4. Use the (possibly di↵erent) wavenumbers for each principal axis to write the elec-
tromagnetic wave inside the medium.

Here, Step 1 is done for us already. We are told that the di↵erent electric susceptibilities �(�±)
correspond to left- and right-handed circular polarizations. Therefore, the principal axis are
the left- and right-handed circular polarizations.

Moving on to Step 2, we need to write the polarization of the incident wave in terms of the
left- and right-handed circular polarizations. We are told the incident electromagnetic wave is
linearly polarized, so we can set our coordinate system so that the incident polarization is x̂.
The left- and right-handed circular polarizations are

✏̂± ⌘
x̂± iŷ
p
2

(344)

Note the extra factor of 1/
p
2, which ensures that the polarization remains a unit vector. We

can write x̂ in terms of the circular polarization vectors:

x̂ =
✏̂+ + ✏̂�

p
2

(345)

Using this relation, the complex incident wave can be written in the principal axes of circular
polarization:
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Now for Step 3, which tells us that the dispersion relation between k and ! could be di↵erent
for each polarization. In this case, defining n± ⌘ n(�±), we can write this dispersion relation
using (336):

k± =
!n±
c

(347)

On to step 4, the e↵ect of the birefringent medium is captured by writing k± along each principal
axis in accordance with dispersion relation (347):
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The problem asks us to find the polarization after a distance ` in the medium. In other words,
we need to find the direction that the E field points after that distance. To find this, plug in `

for z and pull out the time-harmonic factor e�i!t:

Ẽ(z = `, t) =
"0
p
2

h
✏̂+ exp

⇣
i

⇣
!n+

c
`� !t

⌘⌘
+ ✏̂� exp

⇣
i

⇣
!n�
c

`� !t

⌘⌘i

=
"0
p
2


✏̂+ exp

✓
i
!`

c
n+

◆
+ ✏̂� exp

✓
i
!`

c
n�

◆�
e
�i!t (349)

The goal is to rewrite the term in brackets in terms of a single real-valued vector. Now, define
n0 as the average between n+ and n�, and define �n as the di↵erence between n+ and n�:
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We can require the electric field in terms of these quantities:
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Finally, we can rewrite the circular polarization vectors in terms of x̂ and ŷ:
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The physical electric field is the real part of this complex electric field. Assuming �n is real,
which will be justified in a moment, we have
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Recall that the original polarization vector was x̂. We have just found that the new polarization
vector is x̂ cos

�
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�
, so the polarization has rotated by an angle
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All we need to do now is write ✓ in terms of �B . The problem tells us that �± = �±�B , but
it then tells us that we are working at resonance (� = 0). Therefore, �± = ±�B . From �±,
we can find the electric susceptibilities �±:
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From the electric susceptibilities �±, we can find �n using the formula n ⇡ 1 + �/2:
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From the di↵erence in the indices of refraction �n, we can write the angle that the polarization
has rotated (354):
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where L = 2c
!�0

is the absorption length we found in part (a).

Here is a sketch of the angle of rotation:

Note that the maximum angle occurs for �B = 1/2.

2014 Q11 is another birefringence problem.
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