
UCLA Physics Fall 2017 Comprehensive Exam

10. (Electromagnetism)

Consider the backscattering of laser photons from a counter-propagating relativistic electron. The elec-

tron is taken to be traveling in the z-direction with speed v giving a Lorentz factor γ =
[
1− (v/c)2

]−1/2
.

The laser photons propagate in the opposite (−z) direction and the scattered photons propagate in the
positive z-direction. The laser photons have a free-space wavelength of 800 nm (~ω = 1.55 eV), and the
electron’s total energy is 100 MeV.

(a) Assuming the Thomson approximation, the frequency ω′ of the scattered radiation in the electron
rest frame obeys ~ω′ � mec

2, and the backscattered radiation has nearly the same frequency
but opposite wavenumber k′ (reversed propagation direction) as the laser in this frame. Write
expressions for k′ and ω′ and evaluate the adequacy of the Thomson approximation.

(b) What is the energy of the scattered photons in the laboratory frame?
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Solution: Solution by Jonah Hyman (jthyman@g.ucla.edu)

This is a special relativistic collision problem, almost a classical mechanics problem. To start, let’s
draw a diagram of the setup before and after the collision in both the lab frame and the electron
rest frame:

(a) First, note the relationship between frequency and wavenumber of photons in a vacuum, which
is just the dispersion relation for a plane wave:

ω = c|k| (65)

(We will take the wavenumber k to be positive if the photon is moving in the +ẑ direction
and negative if the photon is moving in the −ẑ direction. The angular frequency ω is always
positive.) The problem tells us that in the electron rest frame (assuming the Thomson approx-
imation), the initial and final frequencies of the photon are the same, and the initial and final
wavenumbers of the photon are opposite. In other words,

ω′rest = ωrest and k′rest = −krest in the Thomson approximation (66)

The problem gives us a value for klab when it tells us that the wavelength of the laser photons
is 800 nm (recall that the wavenumber k and the wavelength λ are related by k = 2π

λ ). The
problem also gives us a value for ωlab when it tells us that ~ω = 1.55 eV for the laser photons.
Therefore, all we need to do is find ωrest and krest in terms of ωlab and klab, and (66) will do
the rest.

To relate the wavenumber and frequency in the two frames, recall that for a photon, the
energy is given by

Ephoton = ~ω (67)

Since the photon is massless, the energy-momentum relation for relativistic particles, E =√
(pc)2 + (mc2)2 becomes Ephoton = |pphoton|c, so

|pphoton| =
~ω
c

= ~|k| by (65) (68)

Therefore, the relevant components of the four-momentum of a photon are

pµphoton =

(
Ephoton/c
pphoton

)
=

(
~ω/c
±~ω/c

)
(69)
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where the ± is chosen according to the direction of motion of the photon. For us, the photons
initially move in the −ẑ direction, so

pµphoton, lab =

(
~ωlab/c
−~ωlab/c

)
and pµphoton, lab =

(
~ωrest/c
−~ωrest/c

)
(70)

Therefore, to transform ωlab and klab into ωrest and krest, perform a Lorentz boost of the four-
momentum pµphoton, lab along the velocity +v ẑ of the electron. This gets us the four-momentum
of the photon in the electron rest frame:

pµphoton, rest =

(
γ −βγ
−βγ γ

)
︸ ︷︷ ︸

Lorentz
transformation

(
~ωlab/c
−~ωlab/c

)
︸ ︷︷ ︸
pµphoton, lab

where β ≡ v

c
and γ ≡ 1√

1− β2

=

(
~γωlab (1 + β) /c
−~γωlab (1 + β) /c

)
(71)

Comparing this to the expression for pµphoton, rest given in (70), we can extract an expression for
ωrest: (

~γωlab (1 + β) /c
−~γωlab (1 + β) /c

)
= pµphoton, rest =

(
~ωrest/c
−~ωrest/c

)

=⇒ ωrest = γωlab(1 + β) (72)

= ωlab
1 + β√
1− β2

since γ ≡ 1√
1− β2

= ωlab
1 + β√

(1 + β)(1− β)

= ωlab

√
1 + β

1− β

ωrest = ωlab

√
1 + (v/c)

1− (v/c)
(73)

Using the dispersion relation (65), we get

|krest| =
ωrest

c
=
ωlab

c

√
1 + (v/c)

1− (v/c)
(74)

Since the photon is initially moving in the −ẑ direction, this implies

krest = −ωlab

c

√
1 + (v/c)

1− (v/c)
(75)

Using (66), we can now write ω′rest and k′rest in the Thomson approximation:

ω′rest = ωrest = ωlab

√
1 + (v/c)

1− (v/c)
(76)

k′rest = −krest =
ωlab

c

√
1 + (v/c)

1− (v/c)
(77)
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For approximate, back-of-the-envelope calculations, it is often easier to write our answers in
terms of γ. If we wanted the answer in terms of γ, we could start from (72) and write

ωrest = γωlab(1 + β)

= γωlab

(
1 +

√
1− 1

γ2

)
since

1

γ2
= 1− β2

Then we could write equivalent answers

ω′rest = ωrest = ωlabγ

(
1 +

√
1− 1

γ2

)
(78)

k′rest = −krest =
ωlab

c
γ

(
1 +

√
1− 1

γ2

)
(79)

We might also be interested in getting approximate answers in the limit that the electron is
highly relativistic (v ≈ c). In this limit, γ →∞, so we can write the approximation

ω′rest ≈ 2ωlabγ and k′rest ≈
2ωlabγ

c
if the electron is highly relativistic (80)

We will see in just a moment that this approximation is justified in this case.

In order to evaluate the adequacy of the Thomson approximation, as stated in the problem,
we need to establish whether or not ~ω′rest � mec

2. The first step is to determine γ for the
electron in the lab frame.

The electron’s total energy in the lab frame is given to be 100 MeV, while the rest energy
of an electron is approximately 0.5 MeV (a fact you should memorize or write on your formula
sheet). This means that in the lab frame

E = γmec
2 = 100 MeV and Erest = mec

2 ≈ 0.5 MeV (81)

We can divide these expressions by one another to solve for γ:

γ =
γmec

2

mec2
=

E

Erest
≈ 100 MeV

0.5 MeV
= 200 (82)

Since γ is large, the electron is highly relativistic. Therefore, to evaluate the left-hand side
of the equation ~ω′rest � mec

2, we can use our approximation for ω′rest for highly relativistic
electrons (80), along with the fact that ~ω = 1.55 eV in the lab frame:

~ω′rest ≈ 2~ωlabγ

≈ 2(1.55 eV)(200)

≈ 600 eV (83)

The right-hand side of the equation ~ω′rest � mec
2 is just the rest energy of the electron, which

we know to be about 0.5 MeV:

mec
2 ≈ 0.5 MeV = 5 · 105 eV (84)

Since 600 eV is indeed much less that 5 · 105 eV, we have ~ω′rest � mec
2 and the Thomson

approximation is more than adequate.
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(b) To find the energy of the scattered photons in the laboratory frame, we should first find the
four-momentum of the scattered photons in the electron rest frame, which we’ll call p′µphoton, rest.
Then, we will convert that four-momentum back into the lab frame.

We already know ω′rest from part (a), and we know that the scattered photons propagate
in the +ẑ-direction. Therefore, by (69), the four-momentum of the scattered photons in the
electron rest frame is

p′µphoton, rest =

(
~ω′rest/c
~ω′rest/c

)
where ω′rest is our answer from part (a) (85)

To transform this answer back to the lab frame, perform a Lorentz boost back to the lab frame.
This is the opposite of the Lorentz boost from part (a), so it is a boost of −v ẑ. This gets us
the four-momentum of the photon in the lab frame:

p′µphoton, lab =

(
γ +βγ

+βγ γ

)
︸ ︷︷ ︸

Lorentz
transformation

(
~ω′rest/c
~ω′rest/c

)
︸ ︷︷ ︸
pµphoton, rest

where β ≡ v

c
and γ ≡ 1√

1− β2

=

(
~γω′rest (1 + β) /c
~γω′rest (1 + β) /c

)
(86)

Comparing once again to (69), we can extract the angular frequency of the scattered photon in
the lab frame:

ω′lab = γω′rest(1 + β) (87)

Therefore, the energy of the scattered photon in the lab frame is

E′photon, lab = ~ω′lab
= γ(~ω′rest)(1 + β) by (87)

It is helpful to write this in terms of γ and to impose the approximation that the electron is
highly relativistic (γ →∞):

E′photon, lab = γ(~ω′rest)
(

1 +

√
1− 1

γ2

)
since

1

γ2
= 1− β2

≈ 2γ(~ω′rest) as γ →∞ (88)

In part (a), we found that (82) γ ≈ 200 and (83) ~ω′rest ≈ 600 eV. With these numerical results,
we can calculate E′photon, lab to be

E′photon, lab ≈ 2(200)(600 eV)

= 240, 000 eV

E′photon, lab ≈ 240 keV (89)
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