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1. (Quantum Mechanics)

Consider two particles of masses m1,2 in a one-dimensional harmonic oscillator potential V = 1
2m1!

2
1x

2
1+

1
2m2!

2
2x

2
2. In the far past, the x1-oscillator is in the ground state while the x2-oscillator is in its first

excited state. They then experience a perturbation �V (x1, x2, t) = �(x1 � x2)2e�
1
2↵

2
t
2

. Compute, to
lowest nontrivial order in �, the probability that in the far future the x1-oscillator is in the first excited
state while the x2-oscillator is in its ground state.
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Solution: Solution by Jonah Hyman (jthyman@g.ucla.edu)

This problem combines the quantum harmonic oscillator with time-dependent perturbation theory.
Both are extremely common comp topics. A short review of each follows.

Quantum harmonic oscillator:
The Hamiltonian for a harmonic oscillator centered at the origin, with mass m and natural frequency
!, is

H =
p
2

2m
+

1

2
m!

2
x
2 (1)

We can rescale p and x into the dimensionless coordinates P andX, which simplifies the Hamiltonian
considerably:

H =
1

2
~!(P 2 +X

2) with P ⌘
p

(m!~)1/2
and X ⌘

⇣
m!

~

⌘1/2
x (2)

From these dimensionless coordinates, we can write the raising and lowering operators:

Lowering operator: a ⌘
X + iP
p
2

(3)

Raising operator: a
†
⌘

X � iP
p
2

(4)

We can then derive the canonical quantization relations of the raising and lowering operators, and
we can rewrite the Hamiltonian in terms of them:

H = ~!
✓
a
†
a+

1

2

◆
with [a, a†] = 1 (5)

We may also write X and P in terms of a and a
†:

X =
a+ a

†
p
2

and P =
a� a

†
p
2i

(6)

There is a ladder of energy eigenstates {|ni}1
n=0, where

H |ni = ~!
✓
n+

1

2

◆
|ni (7)

a |ni =
p
n |n� 1i (8)

a
†
|ni =

p
n+ 1 |n+ 1i (9)

Time-dependent perturbation theory:
The key to deriving the formulas for time-dependent perturbation theory is to work in the inter-
action picture. For an unperturbed, time-independent Hamiltonian H0 added to a time-dependent
perturbation V (t),

H(t) = H0 + V (t) (10)

we write the interaction picture by folding the time-evolution of each state under H0 into the
quantum operators. If OS is an operator in the (typical) Schrödinger picture, the equivalent operator
OI in the interaction picture is defined by

OI(t) ⌘ e
iH0t/~ OS e

�iH0t/~ (11)

To make sure that the expectation value h |O| i is the same in both pictures, we must change the
state | i accordingly. If | S(t)i is a time-evolved ket in the Schrödinger picture, the equivalent ket
| I(t)i in the interaction picture is defined by

| I(t)i ⌘ e
iH0t/~ | S(t)i (12)
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Kets in the interaction picture obey the Schrödinger equation for the perturbation Hamiltonian VI(t)
in the interaction picture:

i~ @
@t

| I(t)i = VI(t) | I(t)i (13)

We can integrate this equation (applying the initial condition for the state  at a reference time t0)
to get

| I(t)i = | I(t0)i �
i

~

Z
t

t0

dt
0
VI(t

0) | I(t
0)i (14)

To lowest order in perturbation theory, | I(t0)i ⇡ | I(t0)i, so this equation becomes

| I(t)i = | I(t0)i �
i

~

Z
t

t0

dt
0
VI(t

0) | I(t0)i to lowest order (15)

Now suppose that at t = t0, the system is in an eigenstate |ni of H0, and we are interested in the
transition amplitude to another eigenstate |mi. We can then take the inner product of (15) with
hm|:

hm| I(t)i = hm|ni �
i

~

Z
t

t0

dt
0
hm|VI(t

0)|ni

= �mn �
i

~

Z
t

t0

dt
0
e
i(Em�En)t

0
/~

hm|VS(t
0)|ni to lowest order (16)

In the second line, we have applied the definition of an operator in the interaction picture (11). Since
hm| I(t)i = e

�iEmt/~
hm| S(t)i by (12), this is what we need to calculate transition probabilities.

With all this in mind, here is how you solve the problem. The unperturbed Hamiltonian is a sum
of two harmonic oscillator Hamiltonians

H0 =
p
2
1

2m1
+

1

2
m1!

2
1x

2
1 +

p
2
2

2m2
+

1

2
m2!

2
2x

2
2 (17)

Let |n1, n2i be the eigenstate associated with the n1 eigenstate of the first oscillator and the n2

eigenstate of the second oscillator. The problem tells us that “in the far past, the x1-oscillator is in
the ground state while the x2-oscillator is in its first excited state.” This means that | (�1)i = |0, 1i.

We are interested in “the probability that in the far future the x1-oscillator is in the first excited
state while the x2-oscillator is in its ground state.” This means that we want to find h1, 0| (+1)i.

(We are being slightly vague about whether we are in the Schrödinger picture or the interaction
picture. We also haven’t mentioned when the two pictures are set to coincide. The reason for this
is because the di↵erence between h1, 0| S(t)i and h1, 0| I(t)i is some phase factor e�iE(1,0)(t�t0)/~,
and such factors don’t change transition probabilities.)

Equation (16) tells us how to start:

For all time-dependent perturbation theory problems, start by calculating the matrix elements
of the perturbation Hamiltonian between initial and final states.

In this case, that means we need to calculate h1, 0|�V |0, 1i, where �V is the perturbation Hamil-
tonian

�V (x1, x2, t) ⌘ f(t)(x1 � x2)
2 for f(t) ⌘ �e

� 1
2↵

2
t
2

(18)

Notice that we are pulling out all non-operator constants, even the time-dependent ones, in order
to focus on the operators that contribute to the matrix element. The next step is to expand �V in
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its terms, bearing in mind that the operators x1 and x2 commute with one another:

�V (x1, x2, t) = f(t)
�
x
2
1 + x

2
2 � 2x1x2

�
(19)

The next step is to write x1 and x2 in terms of raising and lowering operators. But before doing
this, note the following time-saving fact (which comes from (6)):

For a harmonic oscillator, the operators x and p either raise an energy eigenstate exactly once or
lower an energy eigenstate exactly once.

In other words, x1 moves us exactly one step (up or down) on the x1-oscillator ladder of eigenstates,
and x2 moves us exactly one step on the x2-oscillator ladder. We want to know the transition
probability between |0, 1i and |1, 0i, so we want to know about processes that move us one step up
the x1-ladder and one step down the x2-ladder.

The first two terms in (19) cannot move us one step on both ladders: x2
1 either moves us 2 steps up

the x1-ladder, moves us 2 steps down the x1-ladder, or moves us nowhere. The same logic applies to
x
2
2 and the x2-ladder. So for the purposes of calculating h1, 0|�V |0, 1i, we can ignore these terms

and examine only the third term in (19):

h1, 0|�V |0, 1i = �2f(t) h1, 0|x1x2|0, 1i (20)

Now we can use (1) and (6) to write this equation in terms of raising and lowering operators for
each oscillator:

h1, 0|�V |0, 1i = �2f(t)

✓
~

m1!1

◆1/2✓ ~
m2!2

◆1/2

h1, 0|X1X2|0, 1i

= �2f(t)

✓
~

m1!1

◆1/2✓ ~
m2!2

◆1/2 1
p
2

1
p
2
h1, 0|(a1 + a

†
1)(a2 + a

†
2)|0, 1i

= �f(t)
~

(m1!1m2!2)1/2
h1, 0|

⇣
a1a2 + a

†
1a

†
2 + a1a

†
2 + a

†
1a2

⌘
|0, 1i (21)

Again, we are only interested in processes that moves us one step up the x1-ladder and one step
down the x2-ladder. Only the last term in the matrix element (a†1a2) does this, so we can ignore the
other three:

h1, 0|�V |0, 1i = �f(t)
~

(m1!1m2!2)1/2
h1, 0|a†1a2|0, 1i (22)

By application of (8) and (9), we get that

h1, 0|a†1a2|0, 1i =
p
1
p
1 h1, 0|1, 0i = 1 (23)

so

h1, 0|�V |0, 1i = �f(t)
~

(m1!1m2!2)1/2
= ��e

� 1
2↵

2
t
2 ~
(m1!1m2!2)1/2

(24)

With this knowledge, we are ready to apply the first-order time-dependent perturbation theory
formula (16).

h1, 0| I(+1)i = �(1,0),(0,1) �
i

~

Z +1

�1
dt

0
e
i(E(1,0)�E(0,1))t

0
/~

h1, 0|�V (t0)|0, 1i to lowest order

= i�
1

(m1!1m2!2)1/2

Z 1

�1
dt

0
e
i(E(1,0)�E(0,1))t

0
/~
e
� 1

2↵
2(t0)2 (25)
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In the second line, we used (24) to simplify h1, 0|�V (t0)|0, 1i. Here, we have the energy of an
eigenstate (n1, n2) as the sum of the energies of each of the oscillators:

E(n1,n2) = ~!1

✓
n1 +

1

2

◆
+ ~!2

✓
n2 +

1

2

◆
(26)

so

E(1,0) � E(0,1) =

✓
3

2
~!1 +

1

2
~!2

◆
�

✓
1

2
~!1 +

3

2
~!2

◆
= ~(!1 � !2) (27)

We may simplify equation (25) with this information:

h1, 0| I(+1)i = i�
1

(m1!1m2!2)1/2

Z 1

�1
dt

0 exp

✓
�
1

2
↵
2(t0)2 + i!12t

0
◆

for !12 ⌘ !1 � !2 (28)

All that remains is to take the Gaussian integral. The starting point is completing the square in the
exponential:

�
1

2
↵
2(t0)2 + i!12t

0 = �
1

2
↵
2

✓
(t0)2 + 2

✓
i!12

↵2

◆
t
0
◆

= �
1

2
↵
2
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t
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↵2

◆2

+
!
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↵4

!
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1

2
↵
2

✓
t
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↵2
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�
!
2
12

2↵2
(29)

Then, the integral in (28) simplifies to

Z 1

�1
dt

0 exp

✓
�
1

2
↵
2(t0)2 + i!12t

0
◆

= exp

✓
�
!
2
12

2↵2

◆Z 1

�1
dt

0 exp

 
�
1
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↵
2

✓
t
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◆2
!

Making the change of variables u ⌘
�
1
2↵

2
�1/2 �

t
0 + i!12

↵2

�
, we get that

Z 1

�1
dt

0 exp

✓
�
1

2
↵
2(t0)2 + i!12t

0
◆

= exp

✓
�
!
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◆✓
2

↵2
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�1
du e
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2

Using the known Gaussian integral
R1
�1 du e

�u
2

= ⇡
1/2, this gives us

Z 1

�1
dt
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✓
�
1

2
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2(t0)2 + i!12t

0
◆

=
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↵
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✓
�
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◆
(30)

Plugging into (28), we get that

h1, 0| I(+1)i = i�
1

↵

✓
2⇡

m1!1m2!2

◆1/2

exp

✓
�
!
2
12

2↵2

◆
(31)

This is the transition amplitude; to get the transition probability, we must take the square root of
its absolute value:

P(0,1)!(1,0) = |h1, 0| I(+1)i|2 =
�
2

↵2

2⇡

m1!1m2!2
exp

✓
�
!
2
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↵2

◆

Recalling that !12 ⌘ !1 � !2, we can write our final answer

P(0,1)!(1,0) =
�
2

↵2

2⇡

m1!1m2!2
exp

✓
�
(!1 � !2)2

↵2

◆
(32)
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