1. Quantum Mechanics (Spring 2006)
An electron is at rest in a constant magnetic field pointing along the z-direction. The Hamiltonian is
S

B
h

H=—-p-B=gpo
where B = Byii,. Since the electron is at rest, you can treat this as a two-state system. Let |11) be the eigenstates
of s, with eigenvalues i% respectively.

(a) What are the eigenstates of the Hamiltonian in terms of |1 ), and what is the energy difference between them?

(b) At time ¢ = 0 the electron is in an eigenstate of s, with eigenvalue +h/2. What is [1(0)) in terms of [t )?
Calculate ‘w(t)> for any later time ¢ in terms of these same two states.

(c) For the state you calculated in part (b), what are the expectation values of the three components of the spin
at any time ¢7



2. Quantum Mechanics (Spring 2006)
The Hamiltonian for a one-dimensional harmonic oscillator is

»? mwa?

H=—
2m+ 2

Let |1,), n=0,1,2,..., be the usual energy eigenstates.

(a) Suppose the system is in a state |¢) that is some linear combination of the two lowest states only:

|¢) = co [tho) + c1 Y1)

and suppose it is known that the expectation value of the energy is hw. What are |cg| and |c;|?

(b) Choose ¢y to be real and positive, but let ¢; have any phase: ¢; = |c1]|e?®. Suppose further that not only is

the expectation value of H known to be hw, but the expectation value of x is also known:

1 h
(9lz|p) = N\ e

mw
What is 617

(c) Now suppose the system is in the state [¢) described above at time ¢ = 0. That is, [¢/(0)) = |¢). What is
|w(t)> at a later time ¢? Calculate the expectation value of x as a function of ¢. With what angular frequency
does it oscillate?



3. Quantum Mechanics (Spring 2006)

A hydrogen atom is placed in a constant weak electric field of strength £. Ignoring spin, what are the energies of
the n =1 and n = 2 levels including effects to first order in £ (but ignoring second order effects)?

Note: You may want to use some of the following:
Radial Wave Functions R,;(r) (a is the Bohr radius):
Rip(r) = #Ze’r/a Ro1(r) = al L

Roo(r) = im 5 (1= 55) 7/

Spherical Harmonics Y™ (6, ¢):

YOOZ\/% }/10:\/%(:050 Ylilziﬁ/%sineeim

An integral:

fooo e~/ ody = gntlp)




4. Quantum Mechanics (Spring 2006)
Consider the scattering of a beam of non-relativistic spin 0 particles by a repulsive spherical potential of depth Vj
and radius a in three dimensions:
Vo, forr < a;
vin=q"
0, forr>a.

Find the scattering cross section in the Born approximation.



5. Quantum Mechanics (Spring 2006)

A particle with mass m is confined to move on a circle of radius r. It is perturbed by a potential V' (0) = a(1+cos(26)).
(a) What are the unperturbed energy levels?
(b) Find the shift in the energy levels to first order in a.

(¢) Find the second order energy shift for all the states.

Hint: Beware of the special care needed for some of the states.



6. Statistical Mechanics and Thermodynamics (Spring 2006) @

Consider a gas of relativistic, conserved bosons. The relation between energy and momentum is
E=|p|c
(a) Derive the condition for Bose-Einstein condensation in three dimensions.

(b) Does Bose-Einstein condensation occur in two dimensions? Justify your answer.

(¢) What is the highest dimension for which Bose-Einstein condensation does not occur?


Hector
Sticky Note
Look at D'Hoker 2012 Final, Question 4


7. Statistical Mechanics and Thermodynamics (Spring 2006)

(a)

In the case of a set of non-relativistic, noninteracting spin-1/2 fermions confined to two dimensions, what is
the paramagnetic susceptibility at 7' = 07 Give your answer in terms of the mass m of the fermions, the
gyromagnetic ratio vy, the number density o, and whatever fundamental constants (e.g., i, ¢, ...) are necessary
to completely specify the system.

Now, suppose that the external magnetic field is replaced by an effective field H.g, where

M
Hex = H +T—

where H is the external field and M /A is the induced magnetic moment per unit area. Above what threshold
value of the parameter I' is this two-dimensional system ferromagnetic at 7' = 07



8. Statistical Mechanics and Thermodynamics (Spring 2006)
(a) A system consists of N particles, each of which can exist in two states, with energies ¢y and €1, respectively.
Given that the total energy of this system is U, what is its entropy?
(b) Obtain the expression for the entropy in the limit that N is large.

¢) Now, give an expression for the temperature of this system, as a function of U and the energies of the single
g g g
particle states. Does this expression have any properties that require some discussion?

Stirling’s formula: n! & (

n
e

)", when n is large.



9. Statistical Mechanics and Thermodynamics (Spring 2006)

A researcher claims that a particular substance in thermal equilibrium exhibits the following total-number-of-states
function

O(E) = e(E — Ey)*V" exp <_‘9/)

where FEy, ¢, a, v, and g are positive coefficients independent of the energy F, the volume V', and the temperature
T.

(a) Find the equation of state for this substance.
(b) What is the relationship between the average energy and the temperature?
(¢) Does this substance satisfy the third law of thermodynamics? Why?

)
)
)
)

(d) What values should Ey, ¢, a, v, and ¢ take for this substance to behave as an ideal gas?



10. FElectricity and Magnetism (Spring 2006)

An insulated, spherical, conducting shell of radius a is in a uniform electric field Ey. If the sphere is cut into two
hemispheres by a plane perpendicular to the field, find the force required to prevent the hemispheres from separating

(a) if the shell is uncharged;
(b) if the total charge on the shell is Q.



11. FElectricity and Magnetism (Spring 2006)

Consider a long solid cylinder made of uniform resistive material. The cylinder is in a region in which there is an
applied magnetic field that is uniform and is directed along the axis of the cylinder. The magnetic field is time-
dependent and it is oscillating with angular frequency w: B(t) = B, coswtZ. The length of the cylinder is L and its
radius is R (R < L). The resistivity of the cylinder material is p.

[ ..

e

(a) Calculate the current density j(¢) in the volume of the cylinder. Assume initially that you can ignore the
self-inductance of the cylinder. Ignore end effects and the Hall effect.

(b) For large values of w the effect of self-inductance cannot be ignored. Calculate the correction to the current
density Aj(t) due to the self-inductance of the cylinder in next order of w.

(¢) Give the condition on w such that the self-inductance of the cylinder can be ignored.



12. Flectricity and Magnetism (Spring 2006)

Two point charges +Qy and —@ are placed at opposite poles of a spherical balloon of initial radius Ry. The radius
of the balloon is set to oscillate as follows: R(t) = Ry + psinwt. Assume pw < c.

(a) Determine the total power radiated by the oscillating balloon, if any, in terms of Qq, Ry, p, and w. Show your
work and explain your reasoning.

Note: If you are unable to write an expression for the total power radiated, explain how the total power radiated
scales with each of the above variables.

(b) Suppose instead that charges are deposited on the balloon as described below. For each case, determine the
ratio of the total power radiated by the oscillating balloon, if any, to the total power radiated in (a). Show
your work and explain your reasoning.

(i) One point charge +@Qo is placed at a given point on the balloon. The radius of the balloon is set to
oscillate as above.

(ii) A total charge +Qy is deposited uniformly on the surface of the balloon. The radius of the balloon is set
to oscillate as above.



13. FElectricity and Magnetism (Spring 2006)

Consider an infinitely long filamentary current (i.e., a J-function) carrying a total current I along the z-direction.
(a) Find the magnetic vector potential at a radial distance r from the current filament.

Now a non-relativistic particle of charge ¢ and mass m is fired from a radial location d with velocity v pointing in
the radial direction, away from the current filament.

(b) Evaluate the constants of the motion associated with the orbit of this particle.
(¢) Deduce the maximum radial distance reached by the particle.

(d) What condition is required for the orbit size to be well-approximated by the usual Larmor radius expression?



14. Flectricity and Magnetism (Spring 2006)

A plane, transverse electromagnetic wave of frequency w propagates through a scalar medium whose complex dielectric

coefficient is given by
a

ew)y=1- ——+
) w(w + ib)
where a and b are positive real constants.
(a) What is the electrical conductivity of the medium?

(b) What is the ratio of the magnitude of the material current density to the displacement current density in the
medium?

(c) Find the spatial damping coefficient of this wave (i.e., the imaginary part of k) in the limit of small b.
(d) Find the phase-shift between the electric and magnetic fields in the limit of small b.

(e) Does this e(w) satisfy the required symmetry relation for general dielectric coefficients? Why?



1. Quantum Mechanics (Spring 2006)

An electron is at rest in a constant magnetic field pointing along the z-direction. The Hamiltonian is

H= —_u-B=g,u.u%-B
where B = Bgfi,. Si

Since the electron is at rest, you can treat this as a two-state system. Let i) be the
eigenstates of s; with eigenvalues :l:% respectively.

{a) What are the eigenstates of the Hamiltonian in terms of |{.}, and what is the energy difference between
them?

{b} At time ¢ = 0 the electron is in an eigenstate of s, with eigenvalue +5/2. What is |2(0)} in terms of
|14 }7 Caleulate |4i(t)} for any later time ¢ in terms of these same two states

(¢) For the state you calculated in part (b), what are the expectation values of the three components of the
spin at any time £7
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1. Quantum Mechanics (Spring 2006)
An electron is at rest in a constant magnetic field pointing along the z-direction. The Hamiltonian

15

where B = By#i,. Since the electron is at rest, you can treat this as a two-state system. Let |¢1)
be the eigenstates of s, with eigenvalues :t% respectively.
(a) What are the eigenstates of the Hamiltonian in terms of |¢..), and what is the energy difference
between them?
(b) At time ¢ = 0 the electron is in an eigenstate of s, with eigenvalue +%/2. What is [)(0)) in
terms of |¢+)7 Calculate |[4(¢)) for any later time ¢ in terms of these same two states.
(c) For the state you calculated in part (b), what are the expectation values of the three components
of the spin at any time 7

B ‘.-7.3 - N Se =
Hz -8 = +$(£-*ﬁ§)'8 = qmiB = g B = L8

e

~ ug B, o, wheve g = -
2 so=da-R(0%) wmdi() 1e>=(7)
F i) are the eigemstates of H with cigenvalaes
Er = X ughB.,
AE = E.-E. = pgB.+ 1,8, = ZuyB,
b o v = |we)y =(7) Wel> = 2l + LI

o 4 > |
2 G =) o avbe b menatination ([

-iH =
SR O - LA (AN

e ~iw % ) |
Tl e { |1“P+> + @!uct ‘Lkr>) where W, = /{‘ﬁ = ?'n:
c) (5= Swalsdwed = 2o o)
- S S Y Tt h, 2wt = pon
Eileiek SatfiSILLIS A o S5 o)

r
= o5 o5 (Zw,t)

a4

- 4, w 5% o -iy/ €. ; 12k it Bk
(sy) = o e SN o){e“‘“’) - 'é(‘€2°%+52wt)
= %’Sr}n(Zo?,t) k|
X c"“‘"-L
($e) = %(amﬁ e,';u"t)(;j)(e“f't) - %(l"” = O



(e} Now suppose the system is in the state |¢) described above at time t = 0. That is, |4(0
is (e 5 2 O

2. Quantum Mechanics (Spring 2006)

The Hamiltonian for a one-dimensional harmonic oscillator is

2 2 2

2m 2
Let [), n=0,1,2,..

, be the usual energy eigenstates.

(a) Suppose the system is in a state |¢) that is some linear combination of the two lowest states only

|} = eoltho) + e1 Ji)

and suppose it is known that the expectation value of the energy is hw. What are |cg| and |¢|7

(b} Choose ¢y to be real and positive, but let ¢ have any phase: e

a.

b.

M

: 1 = |eg]e'®. Suppose further that not
only is the expectation value of H known to be hw, but the expectation value of  is also known

i h
(Hlalg) = 54/ —
T
What is ﬂf’

= 0. That is, [(0)} = |¢). What
is |14(t)) at a later time ¢7 Calculate the expectation value of = as a function of t. With what angular
frequency does it oscillate?
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2. Quantum Mechanics (Spring 2006)
The Hamiltonian for a one-dimensional harmonic oscillator is
H= Va i mw?z?
2m 2
Let |}, n =0,1,2,..., be the usual energy eigenstates.

(a) Suppose the system is in a state |¢) that is some linear combination of the two lowest states
only:
) = co [0} +c1 [¥h1)

and suppose it is known that the expectation value of the energy is fiw. What are |eol and |e1]?

(b) Choose ¢q to be real and positive, but let ¢; have any phase: ¢; = le1]e®t. Suppose further
that not only is the expectation value of H known to be fiw, but the expectation value of x is

also known:
1 h
(olz|@) = Vg

(c) Now suppose the system is in the state |¢) described above at time ¢ = (. That is, 10(0)) = |4).
Vhat is [t(¢)) at a later time t? Caleulate the expectation value of z as a function of t. With
what angular frequency does it osci]lam'gjmm
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&) CEY = IHI®) = Kull(vet)le) = tw(Flel + F1617) = ha
and Fives that @2 s mfma(??CJ; @l1dY = | |® ¢ lcl? = |

=7 ta+2b=| (‘i gz)v(‘ ! f)m(i 0 %)
24 b ko p i o 7 ) g & 3

2 lelt=d=% Ilal'™={=3 @ lal=lal = 37

- # x X, =16 i
XD ( ; Cﬂ i B o C! — -_.2- e te 6:) - Xo IR 9!
= J.. i T .___.j
goeso [2 o L] > a5 8, = T
EET

: , -l ~E Lk
&) ez o HHENS - g, e S+ ¢ e 1.

oy ——"I" iwwt { 9,‘“?;,.1{ [¥4]
\IZ (e I'l(}"> 6 { : ) | i1>) w[lMC 2 ?.
_Fi(_sa

{x 7 (elu"h(‘k! + 6';(9"3°’°t}(t-{r’,])(eam't.\]t—' [ +_§_..i¢z‘)'+ g"(g"?”"{%?l‘{’,))

- X ;(9,*2 o o ~i1(8 -1
C B Ot | 0-29) =y oo - wt) = T o5 (0wt

\



3. Quanturn Mechanies (Spring 2006)

A hydrogen atom is placed in a constant weak electric field of strength £. Ignoring spin, what are the energies
of the n =1 and n = 2 levels including effects to first order in & (but ignoring second order effects)?
Note: You may want to use some of the following:

Radial Wave Functions F;(r) {a is the Bohr radius):
Ryo(r) = Fm2e"/e

Ra(r) = gagigie ™™

Roo(r) = gmdg (L - F)e /™

Spherical Harmonics Y™ (8, ¢):
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3. Quantum Mechanies (Spring 2006)
A hydrogen atom is placed in a constant weak electric field of strength £. Ignoring spin, what are the energies of
the n = 1 and n = 2 levels including effects to first order in £ (but ignoring second order effects)?

Note: You may want to use some of the following:

Radial Wave Functions R,;(r) (a is the Bohr radius):
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Spherical Harmonics Y;™(8, ¢):
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Confirmed via Mathematica: this should be positive.
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These signs will be flipped.


4. Quantum Mechanics (Spring 2006)

Consider the scattering of a beam of non-relativistic spin 0 particles by a repulsive spherical potential of depth
Vs and radius a in three dimensions:
77 {1{3, for r < a;

0, forr>a.

Find the scattering cross section in the Born approximation.
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':,n\fn[ —~o5(qr) } f —(afg Jr]

L

& ..-ZmV:P[ qco;g"ﬁ __h_(q)_/]
s 1:V [ a{ﬂfga! . mr’i I
q

= ZmVe [ 7% {:&5(\‘.}&) = -GT? Sméﬁ)]
T
%ﬁ | €Yo, )™= Ym* Vo™ )%: cos(qe) - Z,L= 5*"“’4‘”!

2 %%dﬁ = ‘-Im-"VuLj l -‘_‘a}(?ﬁ) ?Smé"ﬂ AR



6. Statistical Mechenics and Thermodynamics (Spring 2006)

Congider a gas of relativistic, conserved bosons. The relation between energy and momentum is
E = |plc
{a) Derive the condition for Bose-Einstein condensation in three dimensions.
(b} Does Bose-Einstein condensation oceur in two dimensions? Justify your answer.

{c) What is the highest dimension for which Bose-Einstein condensation does not oceur?

The simplest definition of T. s ‘the mimimum Yemperature for whith

all pacticles indhe systemn are expected fo be pn excited strtes, Cur shrateyy
|. Find The densty of Strtes

2. Twlegrate Oteupaney times density oF Statesfo get the Jeta | number
of partitles in exited stetes N, (smce €20 {or growd state, They
aren't cownted This :“h-’-egn.l beranse f(éjc-ﬂ}

3, Maximize Ng 4'7}/ Fe’f?[fhj M=C 5o the minintum %eml.ﬂgm'?wg Cornes m’t

Y, Set Ne=N and solve for T=Tc,

. G:—PC,. = 'ch_ P (#_E-E;)ﬂ % n= (m‘iﬂ,)& = dn: {'#_;-:ﬂ-] AG
! 2 N 2
ple)= T qMn An = %(ﬁ)leu\{ = # -(%:)-3 de
Ne= & fe)ple) de |

A TN Y €
=% &y [ o 4
W I oo §'L |
2™ (he)? L eBlE-M) | — o BlE-m) de€

] B L —
- By o 5 M ok heve €4 Gor 70)
e sl oo = AR
= I o) :E_: £t g SR ¢
v £2 Y
S Nhy g[e ol AE}
W

1 \3 (e ~K
= Bon g 7 () M xte ™
. 1 @b e Ehm
m;ﬂ;fhcf BY o= g% -~
— TP B M EB =[5
- 1l - N (®

Ne=N =5 BT T 2es ’

S+ = ke (MT/89)7

S T B (N

b. Tw 2D, pCOAE =F2mtadn= L (5 €A
qive s ;(2} with & simifar frecedvnre anch ¢ (2) {mu’ﬂjé‘i
So EV‘EF‘}'M i -f'—,u-._‘, el ngl @nienﬂh'ph ﬁ{ﬂf’s S LN,

c. In D, p(OAde=dn = = Le  gives ()
witha similac proceure, but (N diverges so e
reswitirg T, i To=0, Sp BEC does nof occur in | D,
mai‘inj | the hig heg dine nsion dor whrch BEC doer not-oceur,

I

—




7. Statistical Mechanics and Thermodynamics (Spring 2006) @

(a) Inthe case of a set of non-relativistic, noninteracting spin-1/2 fermions confined to two dimensions, what
is the paramagnetic susceptibility at T = 07 Give your answer in terms of the mass m of the fermions

the gyromagnetic ratio -y, the number density o, and whatever fundamental constants (e.g., k, ¢,
necessary to completely specify the system.

...) are

{b) Now, suppose that the external magnetic field is replaced by an effective field H.g, where

HER—H{-PE

A

where H is the external field and M/A4 is the induced magnetic moment per unit area. Above what
threshold value of the parameter I' is this two-dimensional system ferromagnetic at T = 07

a. We want Jo fied 2, which is defined by M=7H where
M= M/A and M i The Jotal mngﬂcﬂz‘ﬁaﬂ
£ B W o 2 2t
e-f s e 2 (P e O

T B
i 5
= n'a..: 2o L = v = \I—i—;;,;—(_fé*’*

e

g B

o

ey
= dn = r‘%

Tn 2D, plo)Ae=242Tndn =35 32m (&) d€

Lﬁrgpﬁ'ﬂ = MEA;‘ d €
= _P{E} = '%1—-;{ S0 JDC&} rs constanl.
}\T: 22__ Ay, ﬁr = :2__‘“#; ? ﬂ'a wheére p runs over Momgq'fumg"b?‘“ej

2 -mE B R0 (€) pE) A€ -p, (hle)plelde
M P0) [ (&) de —uy pld) [T (€-)dE  sine pis constr
My plo) I A (E-uH) Ae - Jin $00) (2 7 (€ +mi)dE simce U T

My 900) [ B (M- (€-aR)Ae ~an pO) (PO (i1 (e+ant))d e o T=O
Mu PO (ppr i) = My 20O ar - At

.th»‘rﬂ) (?.#HH) = ?.Mn H‘PC‘.‘?B = L H
"7]".: Ms M

- = 2 mMy
Al T e

b. A {Prﬂmav;d,'c. Swhstance  has

x> |,
e - (o Tht
g ?fﬂ-n(aﬂif FFEL %‘ ':)T?LMAT‘M‘M H+FM
- — - M 1
%H*(Imm.} F)T'j’?'ﬁzi':ﬁt P)
= e 'J_i %%; will prduce ﬁrnma‘gmhsm
H


Hector
Sticky Note
Look at Lim book, 2132-2138


10. Electricity and Magnetism (Spring 2006)
An insulated, spherical, condueting shell of radius a is in a uniform electric field Ey. If the sphere is cut into

two hemispheres by a plane perpendicular to the field, find the foree required to prevent the hemispheres from
separating

(a) if the shell is uncharged,; Thes 15 Tae Eson 2 9
(b if the total charge on the shell is Q.

e a, The S‘f‘ra‘}ﬂ RS
D Imagive The E field i7 created by Jwe
- po T chamges a !ADe, distance R awey
TE' -r: = and vse fhe meflod of Mnages fo find the
potertia| outside the 5;:1-..9-*&
2) Fnd & ushg o= -6& g—;u

§i-R) 3) Find the {oree wsing  F= 2 J:,,“,.qu

o 2 osle
ethd of Tomages - {m (Fore) 5dA =
Z’:—% ?;,_%? P S;.V ﬁfﬁfﬁﬁ)ﬂ E?mflﬂ) 1d

wlrerem ﬁ(ﬁr g-F 2 cemes 'ﬂn‘r havin
‘o Wifﬁ GoTh hf,’m-sphemg rh order :ﬂdd‘fhsm
gy ether.
) B 2 T = 9= 2meRE
Kecall P= _f'ﬁ'_?(#ﬂdlr—' > P" pomfs ‘fiwnrJPo;ﬁﬁve drmrge_, unlike fidde
F= l2z'gl2 = 2 92, = Y& a’E 2
Remember “That VJ;; = —— £L Se

4T r>
! 3
Vv = e, ﬁ%{"i (os0) = S E, ws(b)

Ve = - [Ba7 = ~E.res®)
7
v - v""*‘in " \Jﬁeu e (f' = %)E* G:g(é')

2) oc=-6 ‘%‘%)rm i ’E_]r-ﬂ é(l *2%‘:)5{'5{9”,:1

S E, costo) whieh 5 Tackson (2,15)

A6 E g™ (=m) ST cos?0)smis) do Let xecost®)
9 Ea*(2T) [ x’dx = ImaESa

5

\

5l B

z

T

b. In pwrt a, The surdace was an ewan'fﬂhhﬂlli so an addiona |
' curge R will spread ouf uniformly: 7= 36 E. wclp)+ Q/4Tat

£ ?ﬂag_ J”'ﬁh. [‘?éaE Cos(®) + 2 -3._?_.5_“., co5(0) & #]Cpﬂ’b}ﬂnfﬂ}&ﬁ
= j"ﬁ@nEi a + BEbOSﬂ;iﬁfYa)ﬁhfﬁ}J,ﬁ + Hﬁ;_ f m;ﬁ}'&rhfﬂ)}?

= TTMGE + Bl + »—f—-——-—
b
B.t The middle term £ The Qchar n‘H‘rAdﬂ*ﬂ with the q‘ﬁefrfj
whithh ¢ (n The Sama dﬂrec?m for baﬂ hemri?h?rﬁ‘ Lo

=g 'TFQE IbTia™ €



B. Statistical Mechanics and Thermodynamics (Spring 2006)

(a) A system consists of N particles, each of which can exist in two states, with energies ep and e, respec-
tively. Given that the total energy of this system is I/, what is its entropy”

(b) Obtain the expression for the entropy in the limit that N is large.

(c] Now, give an expression for the temperature of this system, as a function of I7 and the energies of the
single particle states. Does this expression have any properties that require some discussion?

Stirling’s formula: n! = (2)", when n is large.
a. The sr‘rgfe Fdr"ﬁte_, PﬁHJ?}P‘ﬁ fanctien 1'S
o - —F&s - BE,
3 - e Y

i ,N
T %* g fer® we™y
S= k(n(2) + BU) = K[ NIn (e Fs ¢ 7€) -1n (V) +BU]

b, Wsmng $=‘irﬂm3'5 Fnrmm.]a.l In (N) & an(%): NIn(N)-N

D52 K[Nm(eP re™) —Nin(N) +N ~BU]

Ue = 22D where Jnlz) = Nln(e e ™€) - In (M)
- BE,

u-_—, N T2

E-"‘En s E

- B, Ve
-de,

Now grovp like derms do solve for £
-F s i -~ E&,
WU (e é"+5 ,ae,) = N( e +€. € )

(LA=Ne) o P® = We, - U Ye*
o Bl6m6) _ Ne,-U

B ( \ Y Ve
Er' & = ‘]_n ( u:l:jéﬁ
s é‘ éﬂ .- =t

This expressisn has 1‘}-@ Frppg,,t), that 11 is negatie
it Né-U<U-Ne, & W EN(eve) , which

16 a Cheragleristie of Systems with an ufPff Jomit
Yo their total energy (see Reif Page lo5).



9, Statisticel Mechanics and Thermodynamics (Spring 2006)

A researcher claims that a particular substance in thermal equilibrium exhibits the following total-number-of
states function

(E) = (B — o)V exp (-2 )

where Ey, ¢, o, v, and g are positive coefficients independent of the energy F, the volume V', and the
temperature T

(a} Find the equation of state for this substance.

(b} What is the relationship between the average energy and the temperature?
(¢} Does this substance satisfy the third law of thermodynamics? Why?

(d) What values should Ep, ¢, &, v, and g take for this substance to behave as an ideal gas?
a.  AE=TIS - pdV > ds= taE £ oy
As= (32), 4E" (BN > (38),=F and (F)e-L
The mog} Fyprcal equationot stal-e here i's
P= T @5) and S= Kin(aE) = Kin [(EEYV exp(-)]
= T (KinTe(BE)T +kin[Vex (-2)])

7y (1 ee(-3) ¢ V) en(Y)

— I{_T(-g—-r-.%
S pV=E k(v v )

= (3), = @), (KL (ear]+kinle VW enp(-2)])
o= (ﬁ)v ( <K ln (E'En])

ot K
E-E c
_ E-ts
= T = et

C. The 3% Law states Sﬂﬂfsﬂ and gs T»@ we have
ESE, and 5= Kln(0)=-00 , which is net some
C""‘Fﬁﬂ"f Sp , 5S¢ 7”"“! anSwer /¢ e,

Nele ! The 7&&1!}“ alse deeg nt safisty Hhe 3% | aw because
Nisnet a valid appconmefion for [ow fewperatuces,

d.  TFer an -Jeaf 948 , E= 2 NeT and fV"N’F-T

E>Q a5 T=0 = Ea-c‘:ﬁ EF= -—Ny_"lr"' o [T Do =%N,

pV= N¥T = KT(B"’“-—) = N=0+ _f-"_=a; i:__i?aﬂl{ 7=N
New JUEY= ¢ {Vfgf")w = =1 Smcg S(N:= Q‘)—%O




11. Electricity and Magnetism (Spring 2006)

Consider a long solid cylinder made of uniform resistive material. The cylinder is in a region in which
there is an applied magnetic field that is uniform and is directed along the axis of the cylinder. The
magnetic field is time-dependent and it is oscillating with angular frequency w: B(t) = B, coswt£.
The length of the cylinder is L and its radius is R (R < L). The resistivity of the eylinder material
is g

(a) Calculate the current density j(f) in the volume of the c¢ylinder. Assume initially that you can
ignore the self-inductance of the cylinder. Ignore end effects and the Hall effect.

(b) For large values of w the effect of self-inductance cannot be ignored. Caleulate the correction
to the current density Aj{f) due to the self-inductance of the eylinder in next order of w.

(¢) Give the condition on w such that the self-inductance of the cylinder can be ignored.

a. VxE = - = 5‘5.,)],&,.\&%13.;\;:_]-&”6,5- (wt) % -da
2 2MeE = (y BesmlwDTIer 2 E_:= “{ w B, sinlwt) ¢ &
SrecEr g o S 5p wBs sinl (wt)rd
b. Frest we find tThe coretction o the ma&ne'ﬁt field due o
all the _;a.enolﬁii ovtride radius . E.ﬁ.r(r'ﬂ Mo R (r,1)

AR () = T(r)de and ¥I(r) :-:”z-'fr]clz = Tle) alr'JZ%clB;,r(ﬁT) = U9 (rNdr
AB(e ) = [FaBe (rh) - 5w Ba sinlw] ® e’
i -:—}r 0 By sin () d (% R"~r"))— 209 By sinlwh (R*-r%)
Kd:—éfi = [ . 'EE, !-'EF*’
‘E‘"E > | B4 ,p-- - Jar(r 28 cacde

= 27§ %—(aﬁ)ralr
> ag = -1 5" Hs 2 B, cos(w)( K- ) dr

--,-:a;:— 98" otiet) (AR -5 Y)
) # o * S,,car/wﬂ(z"‘ﬂir{fr)

i

=2 AT?-}}QE‘z :}“ w* B, ca:f'wﬂ( R - --r?,)ﬁp
> L :
. \é'f""i""" $ __LE._ETB_“; &> ’;wf-d@wﬂ iu

25


Hector
Sticky Note
Part b may be correct, but I should confirm by looking for solutions to this problem elsewhere.
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