






We use first order perturbation theory. For B = 0 we have

En =
h̄2π2n2

8mL2
, ψ±n (x) =

1√
L

 cos(nπx/2L) n = 1, 3, 5, . . .

sin(nπx/2L) n = 2, 4, 6, . . .

where ± denotes spin up or down in the z-direction.

We need to use degenerate perturbation theory because spin-up and down

states have the same energy at B = 0. In degenerate perturbation theory

we compute the matrix elements of the perturbation in each degenerate

subspace. The matrix elements are 〈ψ+
n |HB|ψ+

n 〉 〈ψ+
n |HB|ψ−n 〉

〈ψ−n |HB|ψ+
n 〉 〈ψ−n |HB|ψ−n 〉


Using that σz(σx) only has nonzero matrix elements between states of the

same(opposite) spin we have

〈ψ+
n |HB|ψ+

n 〉 = −〈ψ−n |HB|ψ−n 〉 = µ0B
∫ 0
−L (ψ+

n (x))2dx = µ0B
2

〈ψ+
n |HB|ψ−n 〉 = 〈ψ+

n |HB|ψ−n 〉 = µ0B
∫ L
0 (ψ+

n (x))2dx = µ0B
2

(1)

The matrix of perturbations is therefore

µ0B

2

 1 1

1 −1


The shifts in energy are given by the eigenvalues of this matrix, which are

determined by the equation(
µ0B

2
− λ

)(
−µ0B

2
− λ

)
−
(
µ0B

2

)2

= 0

with solutions λ = ±µ0B√
2

. The energies to first order in B are therefore

En =
h̄2π2n2

8mL2
± µ0B√

2

2. Quantum Mechanics (solution)









(a) When we treat the proton as a point charge, the potential energy is given by

V0(r) = − e2

4πε0

1

r
. (4)

When the proton is treated as a ball of radius R, we can compute the potential energy as follows.
First, we use Gauss’s law for electric field

∮
~E · d ~A = E (4πr2) =


1
ε0
e r ≥ R ,

1
ε0

e
4πR3

3

4πr3

3 = 1
ε0
e
(
r
R

)3
r < R .

=⇒ E =


e

4πε0
1
r2 r ≥ R ,

e
4πε0

r
R3 r < R .

(5)

Then the potential energy of the electron is given by

V (r) = −
∫ ∞
r

eE dr =


− e2

4πε0
1
r r ≥ R ,

− e2

4πε0
1
2R

[
3−

(
r
R

)2]
r < R .

(6)

We treat the change from V0(r) to V (r) as a perturbation H ′ in the Hamiltonian, with H ′ given by

H ′(r) = V (r)− V0(r) =


0 r ≥ R ,

e2

4πε0

{
1
r −

1
2R

[
3−

(
r
R

)2]}
r < R .

(7)

Using the perturbation theory, we obtain the energy shift to the 2s state

∆E2s = 〈2s|H ′|2s〉

=

∫
d3~rH ′(r)|ψ200|2 =

∫ ∞
0

dr r2H ′(r)R2
20(r)

∫
dΩ |Y00(θ, φ)|2

=

∫ R

0

dr r2
e2

4πε0

{
1

r
− 1

2R

[
3−

( r
R

)2]}[ 1√
2
a−3/2

(
1− 1

2

r

a

)
exp (−r/2a)

]2
≈ e2

4πε0 a

1

20

(
R

a

)2

, (8)

where we have used the fact that the angular part is normalized as
∫
dΩ |Y00(θ, φ)|2 =

∫
sin(θ) dθ dφ|Y00(θ, φ)|2 =

1, and thus we only need to compute the integral over the radial part. In the final step, we take the
approximation R/a� 1 and keep only the leading term. Likewise, the energy shift to the 2p state

∆E2p = 〈2p|H ′|2p〉

=

∫ ∞
0

dr r2H ′(r)R2
21(r)

=

∫ R

0

dr r2
e2

4πε0

{
1

r
− 1

2R

[
3−

( r
R

)2]}[ 1√
24
a−3/2

r

a
exp (−r/2a)

]2
≈ 0 , (9)

at the order of (R/a)2.

4. Quantum Mechanics (solution)



(b) If one treats the proton as a point charge, since En = E1/n
2, i.e., only depends on the principal

quantum number, we would have the energy levels E2s(R = 0) = E2p(R = 0). However, now for a
finite-size proton, the energy levels of 2s and 2p are no longer equal to each other. Instead, they differ
by

E2s(R)− E2p(R) = ∆E2s −∆E2p =
e2

4πε0 a

1

20

(
R

a

)2

. (10)

If one measures the energy difference between 2s and 2p, E2s − E2p, one can then determine the size
of the proton.



An electron (charge e = -|e| and rest mass m) with mechanical momentum 

𝒑𝒑 = 𝑝𝑝0(𝒙𝒙�  sin𝜃𝜃 + 𝒚𝒚�  cos 𝜃𝜃) 

enters into a static magnetic field region (x>0) from a region of free space (zero magnetic field 
and zero vector potential) at x<0. 

The magnetic field has no y-component. It is due to a vector potential which has only a y-
component 𝐴𝐴𝑦𝑦 with (x,z) dependence, i.e.  

𝑨𝑨 = 𝒚𝒚�𝐴𝐴𝑦𝑦(𝑥𝑥, 𝑧𝑧) 

In addition, at z=0 the magnetic field is perpendicular to the x-y plane. 

Note: for this problem, you can assume the electron to be non-relativistic or fully relativistic, just 
make that clear in your answers. 

a) Starting from the Lagrangian of a charged particle in external electromagnetic fields,
construct the relativistic Hamiltonian of the system and the canonical momentum of the
particle.

b) Show that a trajectory of an electron located at z = 0 with its momentum in the x-y plane
will stay in the x-y plane.

c) Obtain two conserved quantities for the problem above and show, assuming that the
electron eventually leaves the static magnetic field region, that this system is indeed a
mirror for trajectories in the x-y plane, namely an electrons with initial momentum p is
reflected such that the angles that the incoming and outgoing trajectories make with the
y-axis are equal in magnitude and opposite in sign (i.e. 𝜃𝜃1 = 𝜃𝜃2 in the picture below).

d) Find an equation for the depth the penetration (the furthest the electron reaches into the
magnetic field region) and solve the resulting equation for the particular case of field B =
G ((𝒙𝒙�𝑧𝑧 − 𝒛𝒛�𝑥𝑥). Which sign of G corresponds to the trajectories shown in each figure of
the figures below?

5. Classical Mechanics
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6. Classical Mechanics (solution)

Best to solve in terms of the velocity potential φ where v = ∇φ and 

p = p0 − ρ  0[∂φ / ∂t] and ∂2φ / ∂t2 − c2∇2φ = 0 . For this problem the
homogeneous term can be written down by inspection noting that at the solid 
walls v⊥ = 0 and at x=0; φ = 0 . 



Electro-magnetic induction makes it possible to carry out a wire-tap on a landline phone 
without cutting any wires. Here is how it works. The telephone wires are represented by 
two infinitely long straight parallel wires separated by a distance d, carrying time-dependent 
currents ±I(t) in the two wires of equal magnitude but opposite direction, as indicated 
by the arrows in the figure. Parallel to and in the same plane as the wires, we install a 
small rectangular closed circuit of length ` and width b representing the wire-tapping device, 
separated from the closest telephone wire by a distance a, as shown in the figure below.

d

a

b

`

I(t)

I(t)

1. Write down the magnetic field produced by a single wire traversed by a current I(t).

2. Compute the magnetic flux Φ(t) through the rectangular loop as a function of the
geometrical data specified in the figure and the current I(t).

3. Compute the electromotive force ε(t) generated by this flux.

4. Is the current induced in the rectangular loop clockwise or counterclockwise ?
Justify your answer in terms of the sign of I(t) and its derivative at any given time t.

7. Electromagnetism









Consider a closed circuit formed into a circular coil of N turns with radius a, resistance R. You 

can neglect the self-inductance of the circuit. The coil rotates around the z-axis in a uniform 

magnetic field B directed along the x-axis (see below) 

a) Find the current in the coil as a function of  for rotation at a constant angular velocity .

Here (t) = t is the angle between the plane of the coil and B (the x-axis).

b) Find the externally applied torque that is needed to maintain the coil’s uniform rotation.

c) Due to the time-dependent currents induced in the coil, electromagnetic waves are

radiated. What is the frequency of the radiation?

d) What is the polarization of the radiated waves propagating along the positive z-axis?

e) Compute the total power radiated by the rotating coil of the wire.

9. Electromagnetism





a) Determine the magnetic fields in the iron when x=0 (the gap is closed).
Hint: since µ >> µ0, the magnetic field lines follow the shape of the iron (no magnetic
flux leakage), and you can assume that the magnetic field strength is constant inside the
iron core.

b) Determine the fields H and B in the gap when x is non-zero, but very small, so that you
can still assume that the magnetic field vanishes outside of the iron core and the small
gap region.

c) Determine the total magnetic field energy as a function of x<<L
d) Calculate the force (magnitude and direction) between the two halves for vanishing small

gap x.

10. Electromagnetism

Consider an electromagnet with an iron core. Each segment of iron has length L, constant cross-
sectional area A and permeability µ >> µ0 where µ0 is the permeability of free space. The two 
halves of the magnet are separated by a small distance x<<L. The magnet is powered by a coil of 
N turns carrying a constant current I.  









with Ek =
√
p2c2 +m2

γ∗c
4, p2 = h̄2|~k|2. We have µγ∗ = −µA+µB +3µC . The

chemical potentials of the molecules are given in terms of their densities by

µA = kT log(nA/n
A
Q)− Eb , µB = kT log(nB/n

B
Q) , µC = kT log(nC/n

C
Q)

This gives

nγ∗ = 3
∫ d3k

(2π)3
1

nBQ(nCQ)3nA

nB(nC)3n
A
Q
e(Ek−Eb)/kT − 1

where the nQ’s were given above.







where,

Ω0(T, V, µ) = −M
2β

ln(1 + e−β(−ε−µ))− V

β

∫
d3p

(2π~)3
ln(1 + e−β(p

2/2m−µ))

Within the approximations used, the second term becomes,

−V
β

∫
d3p

(2π~)3
ln(1 + e−β(p

2/2m−µ)) ≈ −V
β

∫
d3p

(2π~)3
e−β(p

2/2m−µ) = −N0

2β
eβµ

so that we have,

Ω0(T, V, µ) ≈ −M
2β

ln(1 + e−β(−ε−µ))− N0

2β
eβµ

Combining these results, the exact formula for the magnetic susceptibility χmagn at B = 0
is given by,

χmagn = − 1

V

∂2Ω

∂B2

∣∣∣
B=0

= −2
κ2

V

∂2Ω0

∂µ2

∣∣∣
T,V

=
2κ2

V

∂N

∂µ

∣∣∣
T,V

where we have used the standard thermodynamic relation N = −∂Ω0/∂µ at fixed T, V to
obtain the last formula. The formula (0.1) gives the number of electrons N in terms of µ so
we use this formula to compute the derivative,

∂N

∂µ

∣∣∣
T,V

=
βM e−β(ε+µ)

(e−β(ε+µ) + 1)2
+ βN0 e

βµ

Eliminating µ using (0.2) we find after some simplifications,

χmagn =
2κ2N

V kBT

[
M−N
M

+
N0

M−N
e−βε

]
In view of our approximations, the second term inside the brackets is negligible compared
to the first term.
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