UCLA Physics OPEN-BOOK, OPEN-NOTE Fall 2021 Comprehensive Exam

3. (Quantum Mechanics)

The purpose of this problem is to show that a spin zero particle with electric charge e in the presence of
a certain radial magnetic field B effectively behaves as a particle with spin % The classical Lagrangian
for the spin 0 particle is given by (here v =1 and r = |r|),

1
L=-mv?+eA v B:VXA:gL
2 r3

where m is the mass of the particle and g is a real parameter.

(a)
(b)
()

Compute the canonical momenta p conjugate to the position variables r.
Write down the Euler-Lagrange equation for the system in terms of r and v.

Using the results of (b) above, show that the combination L = (L, Ly, L) defined by
L=rxmv-— egE
,

is time-independent.

Compute the commutators [L;, r;] (i.e. the commutators of the components of the vectors L and r).
An analogous result—which you are not asked to derive—for [L;, p;] establishes that L represents
angular momentum.

Compute the quantum operator L, in spherical coordinates r, 8, ¢ using the results of (a).

Show that the eigenvalues of L. are half-odd-integer multiples of & when the electric charge e and

the parameter g are related by eg = %

[Hint: In a convenient gauge, the vector potential A for the field B is given by A = gn,(1—cos ) /(rsin 6)
where n, is the unit vector given by ng = (—sin¢,cos¢,0) in spherical coordinates where =z =
rsinfcos¢, y =rsinfsing, z = rcosb.]
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Solution: Solution by Jonah Hyman (jthyman@g.ucla.edu)

This problem mixes classical and quantum mechanics. It attempts to walk you step-by-step through
its solution. Since we are working with a fair amount of vector algebra and calculus, it is useful to
rewrite the Lagrangian in Einstein summation notation (repeated indices summed over):

1 1
L= §mf‘2 +eA i = Smii + eAj (1)

(a) The definition of the canonical momentum is

oL o OL
= — T i = "
¥ Pi= 5,

P (2)

Taking this partial derivative in (1), we get
p=mr+eA or p;=mr;+eA; (3)

Here, A is the vector potential for the field B given in the hint. In other words,

@)

(b) The Euler-Lagrange equation for this system is just the Newton’s second law equation for the
system. This is just a particle of charge e in a magnetic field, so the Newton’s second law
equation is given by the Lorentz force law:

ma=ev x B (5)

If you (like the author) didn’t think of this, you can derive this from the definition of the
Euler-Lagrange equation:

d (0L oL d (0L oL

i ) gy < -2 6

dt (ar) or ot (afa) or; ©)
The first term is equal to ‘Z—I;. Using (3) and taking a total time derivative (applying the chain
rule to the vector potential A(r)), we get

d (0L d .
pn (37”1> == (m7; + eA;)
= mi'i + e (0;4i) 75 (7)

The other term in the Euler-Lagrange equation is given by

oL

o € (0i45) 75 (8)

Thus, the Euler-Lagrange equation is

0 =mi; + e (0;4;) 7 — e (0;4;) 75

The quantity in brackets might remind you of the right-hand side of the BAC-CAB identity:
ax(bxc)=b(a-c)—c(a-b) or (ax(bxc)),=ba;c; —cia;b;

Pattern-matching to (9), and noting that 9;7; = 0, we can identify a; <— 7, b; <— 0;, and
¢; +— A;. This means that (9) becomes

mi; = e[f; x (V x A)], (10)
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Since * = a (acceleration), ¥ = v (velocity), and V x A = B, this becomes
ma=ev x B (11)

In this problem, B = g-%;. In terms of r and b, the Euler-Lagrange equation boils down to

, r
mv =egv X 3 (12)

(¢) To show that L is time-independent, we need only show that its total time derivative is zero.
Using the product and chain rules, we get

dL d r
= (r X mv — egf)
r

dt - dt
dr dv ldr d (1
:%xmv—erma—eg;a—egr% (r)
B ) v r dr
_vxmv+r><mv—eg;+egr—2%
%:rxmx’r—eg%nheg%% since vxv=0 (13)

The problem asks us to use our answer from part (b). Using (12) and substituting for mv, we
get

@—rx (e v><£>—e X—l—e L@
dt g r3 I Ty
1 v rdr
—eg{rgrx(vxr)—r—kﬂdt] (14)
The triple product r x (v x r) can be simplified using the BAC-CAB rule:
ax(bxc)=b(a-c)—c(a-b)
This gets us
rx(vxr)=v(r-r)—r(r-v)
=r’v—r(r-v) (15)
Plugging this back into (14), we get
dL (1,5 v o rdr
o= s (r*v—r(r-v)) - 7“2dt}
Y iy ) v, rdr
- lr 3 H e
[ r r dr

One way to show that the term in brackets vanishes is to remember that the radial component
of the velocity vector is the change in the radius:

_ar

t-v g (17)
Then,
r dr r r
TGE:TQ( )_773(1‘ V) (18)
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Another way to show that the term in brackets vanishes is to take the antiderivative of r - v:

dr)
r.i

Tevy=2L1

<
w

|
ﬁw -
/N
<8
~

- (19)

Either way, we get that % (r-v) = 59 so — % (r-v) + 5% = 0. Plugging this result into
(16), we establish the result

— =0 (20)
so L is time-independent.
(d) To calculate the commutators [L;,7;], we need to use the canonical commutation relations
[ri,r] =0 and [r;,p;] =ihd;; (21)

This means that we need to write L in terms of r and p. Since all components of r commute
with each other, any terms in L that are independent of p commute with r automatically. From
part (a), p=mv + eA, and A depends only on r, so

L=rxmv-— egE
r
r
=rx(p—eA)—eg—
r
:r><p—er><A—egE (22)
r
In components, this becomes

L; = € mipr + fi(r) (23)

where €51 is the Levi-Civita symbol and f;(r) is a function of r. Since f; is only a function of
r, this term commutes with all components of r. Therefore, applying the commutation rules
and relations, we get

[Li7 T]] [61]@@ TkPe, TJ] + [ ( ) ]
= [Gikf TkPe, T ]] since [7‘1,7“3} =0
= €Tk [pg,TJ] + €k [Tk,’l’]]pk as [AB7 C] = A[B, C] + [A, C]B

€ikeT [pe, 7] since [ry, 1] =0

= —€emk [15,pe]  since [A, B] = —[B, A]
= —€;peri (thdj0)  since [y, pj] = ihoy;
—ih €1 Tk
=ihe;pTy  since €5, = —€55k (24)

We have found that

‘ [Li,rj] = ihejpr (25)
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(e) To write the quantum operators in spherical coordinates, we need to use the canonical quanti-
zation prescription

pz:§% and py:?% (26)
From (22), we can write L, in terms of z, y, p,, and py:
L.=(rxp),—e(rxA), —eg (;)Z
= (zpy —ypa) — e (xAy —yAs) —eg ; (27)
Canonically quantizing the first term, we get
TPy = Ypz = ? <l‘§y - y;x) (28)

The best way to convert this to spherical coordinates is to guess (from previous experience)
that the partial derivative % is involved. In spherical coordinates, we have

x=rsinfcosey and y=rsinfsiny (29)
Thus,
0 0Oxr 0 Byg

dp  Dp0zr  Bpdy

. . 0 . 0
= frsmesm@% +7’sm9cos<p8—y

0] 0

Therefore, plugging into (28), we get

h(d L0
TPy~ YPe = (84,9) = —zh% (31)

For the second term in (27), we need to use the vector potential given in the hint:

1 —cosf
A=gp—r-—
g® rsin 6@
1—cosf
— o ~ ~ 32
g(~sing%+cospg) Tt (32)

Therefore, in spherical coordinates, the second term in (27) simplifies to

1—cosf 1—cosf
—e(zAy —yA,) = —e {(r sin 6 cos @) <gcos spcos) — (rsin@sinp) (gsin w(m)]

rsin 6 rsin 6

. 1—cosf

= —egrsinf ———
7S

ind
= —eg(1 — cosf) (33)

[cos2 © + sin? <p]

The last term in (27) simplifies to

rcosf

z
9L =T

= —egcosf (34)
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Putting all three terms together using (31), (33), and (34), we get

L, = —ihg —eg(1l —cosf) — egcosb

O
L, = fih% —eg (35)
(f) If eg = 2, then
.01
Lz =h (—Z&p - 2) (36)

To find the eigenvalues of this operator, note that any wave function must be single-valued
upon taking ¢ — ¢ + 2mw. Therefore, by Fourier analysis, any wave function must be a linear
combination of functions of the form e?*?, where n is an integer. Applying the operator L, to
such a function, we get

=h (2"2_1) eine (37)

half odd-integer

2n—1
2

This means that e is an eigenfunction of L, with eigenvalue h(
the eigenvalues of L, are half-odd-integer multiples of .

). Thus, when eg = g,

This result implies that in the presence of this magnetic field, this spin-zero particle acts like a

spin—% particle, in that its L, angular momentum eigenvalues are half-odd-integer multiples of
h.
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