Chapter 13

Thermodynamics &
Statistical

Mechanics—Solutions

Solution 4.1. a) We first write down the number of available states
using the binomial distribution:

N!

)
no! ny!

(13.1)
and then use Stirling’s approximation to express the entropy, given by
S = kln g, as

S = k[NIn N —n,Inn; — nolnng], (13.2)

where k is the Boltzmann constant. We know that no and n; satisfy

the conditions
N = no + M1 and U= n;E. (133)

Solving these for no and n; and substituting into our equation for S

gives
U, U U ] ( _.__.)J, (13.4)
S=k[NlnN-——ln——-( ——=]ln 7
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b) For a constant number of particles, the temperature can be foypg

from L 9;5-
T \aU/, (135)
Using the expression for entropy (13.4) gives us the temperature:
E
T (13.6)

~ kln(EN/U - 1)
To find the range of ng for which T' < 0, we switch variables from
U and N to ng and n,, using equation (13.3). This gives
1_%
T E
We can see that T < 0 when ng < m;, so that the temperature is
negative for 0 < no < N/2.

(Inng —lnny). (13.7)

c) As the systems approach thermal equilibrium, AS;.a must be
greater than zero. We know that in each system, AS = AQ/T. Suppose
system 1 has T < 0 and system 2 has T > 0. If heat flows to system ]
from system 2, then AQ; > 0 and AQ; < 0, implying that AS <0
in both subsystems. This cannot be true. Conversely, if heat flows
from system 1 to system 2, AS > 0 in both systems, which is allowed.
Thus heat must flow from the system with negative temperature to the
system with positive temperature. This makes sense, because most of
the energy is in the system with negative temperature.
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9. The plasma is electrically neutral, as a whole. N e.vertheless loca] devi,

f’ o.ns in density appear. Consider the electrical potential ¢(r) in the Vicini
1 ) \

of a particular ion. The energy of another ion, of charge e, in that POtential,

is e(r). Therefore the density near the ion has the dependence

n(r) - ne—e#(r)/kT. (I)

The constant n must be the average density of the plasma, because the
influence of the potential energy is expected to disappear as the thermg]
energy kT increases indefinitely. Each species of ion obeys an equation of
the form (1) with density n,(r) and charge ¢,.

Another relation between ¢(r) and n, is provided by Poisson’s equation
relating the potential to the charge density :

Vip(r) = —4n § ealty. 2)

On the assumption that the Plasma is very hot, we may write, for Eq. (1),
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F (& <E>)2> = <E2 — 2E<E> + <E>2>’ we have<(E — <E>)2>§
12. m — =
B> iO(E}”. In addition

Z
ne—E,./IcT _ __lé_ ’
{B) = ZZEe-E,./kT = T 7 00
where E, are the energy states of the system,
1\ __
Z _ z e"En/kT and (-p-—) = kT.
Similarly N : 32_2
B =S = Z o5
thus :
2 Evz_a l%)Z——a—<E>
B =<8 =57 26"
but
9 _ 2 0 XE>
o0 — — kT EVi and T = C,.

Finally one obtains ((E — <ED)*> = kT2C,.
Now consider 3 macroscopi

fractional deviation in energy of the system is

R L T
% LB ] '
To estimate the size of this number, o

magnitude NET (es
we have

ne expects the ¢

. nergy <& to be of the
pecially at high temperatures) y B o

; then C, = Nk, and

[

which is very small for systems of Mmacroscopic sjze, § ¢, N x 102
? 2Ly, ~



7 The linearity of Maxwell’s equations allows us to think of the magnetic
field as arising from two current densities:

(1) A culgent density j = I|m(b* — a?), carried by the cylinder of radius
b, an

(2) a current density —j carried by a cylinder of radius a.
The sum of the current densities (1) and (2) is the current distribution of the
bored-out cylinder. From Ampére’s circuital law § H-dl = (47/c) | j-dA,
one finds that (1) produces a magnetic field H = 21 d/c(b® — a’) at the center

of the hole, while (2) produces no magnetic field at the center of the hole.
The resultant magnetic field, H, is thus given by H = 2Id[c(b® — a?).




23. J is constant in time, since E =0 everyJ- r_\_/_/-k/v-—-
where. Because the slab is infinite, H and ——

’ |
can be functions of z only. From Maxwell’s i
equation | HT {l TH
|

cur]B=4—-7:-!, _/\./‘l“"’—\"J

je——2d —>
sz = é?-;:—-BCz = O, ’

one obtains

iv — V2, A .
where we have used the identity curl cux.'l.= grad ;n:— T :2;23011
must be found obeying the boundary condition B(+d) = H,. ion
desired is o)
e + e*) _ g cosh (kz)
B(z) = H"((e’“’ + e~kd) H, cosh (kd)
where k* = 4z [\¢?. The current density is determined from

| OB o777 Sinh (kz)

The field H has only the external currents as jts sources and hence H — H,
everywhere. This is no contradiction since B — H 4 47M, where M is the
the magnetization per unit volume, and should satisfy ¢V X M = J. Thig is
easily checked in this problem since Y X H=10. Then Vx M — (1/47)
V X B = (1/4n) (4x J/c) = J/¢, and everything is consistent, One sees that

B is confined to a region of the surface of skin depth 1/k and that a super-
conductor does not allow B to Penetrate the interior,
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2]. We choose coordinates as in the figure. We ignore t}:e maglgnTe;;llc'ﬁeld
of .the traveling wave, in comparison with that of the earth’s field. The iono-

spheric electrons have the equation of motion

dv i H
m(%)=eEe“+ev>< :

We regard E as a superposition of right- and left-hand polarized beams,

Eo(& + i§)e~**t. Motion of the electrons is in the z = O-pl:?ne, and must
have the same time dependence as E. This motivates putting v equal to

X

vo(X 4 3§)e~'*t. Then
v X H = LiHvy(X £ i§)e "

and
vo(—tmw F ieH/c) = eE,, LI z
hence
ek, eH
ozm, where o = = ,

The current density is J, = Nevy = iNe*E,[m(w + @,). But

curl H = — 2~ 229 % Wy
" c ot g ¢ 1 o(w + mo)] E,

where o} = 4w Ne*/m is the square of the plesma frequency. On the other
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hand, in the absence of a current, but in a dielectric medium,

By comparison, e, = n} = 1 — o}/0(® 4+ @,). Right- and left-hand po-
larized beams travel with different phase velocities c/n, and c/n_, rotating
E.Ifat z=0, E=E, + E_is in the z-direction, then after propagating a
distance z,
E, + E_ = E {x[elo(nz/o-t) etol(n-z/c) =t
+ iy[eiw((n.z/c)-t) — eiw((n-z/c)—t]},

which implies a rotation through an angle 6 such that

i(eiwmzlc _— eiwn-z/c)

tan 6 = (eiwn.z/c e eiam-z/c) *

Putting n, — n_ = On, one finds tan § = —tan (wdnz[2¢) or 6 = — wzdn|2c.



I = L[(1 — v)/(1 +v)].

42. In the rest frame the force per unit length F is given by F = AE, where
E is the electric field at one wire produced by the other. This is easily found
from Gauss’ Law,

J E-dA = 4r (charge enclosed).

Thus £ = 2\/a, and the force F' = 2A*/a (repulsive).

In a frame in which the rods are seen to move with velocity v, there is
a magnetic field B = v X E’[c, in addition to the electric field E’. The total
force per unit length F’ is then

! 2
F = x'(E' + 1 B) — h’(l _ -’;—2)14:

However, E' = 2\'/a where A’ is the charge as seen in the new frame
(A = oA because of the Lorentz contraction of lengths). Thus

o 2P — ) _ 2N o
a a

The fact that F’ = F may be seen easily by an alternate argument. If in its
rest frame, one of the rods is allowed to move under the action of the force
FL on it, it would gain momentum dp = F L dt, while in the frame in which
the rods move, the gain is dp’ = F'L’dt’. But dp = dp’ because momenta
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normal to the direction of a Lorentz transformation are invariant unge,
r T .
such a transformation, and dt’ = vdt. Hence LF = yF L'. In additioy

L’ = Ly, due to Lorentz contraction; hence F = F'.



