QUESTION 2: [40 points]

a) Consider the operator
T(a) = exp(—iaP/h) (0.9)

Where a is a constant and P is the momentum operator Show that

T ) X T(a) =z +a

+A_ A
CxP)=ik Use € Be - 2xp Adp B

(0.10)

P/ —ia¥
Gkrﬂ h,x e ”1; (\45 dJﬁqu»)<

:x%‘\%EP/Xj

::X.\.O(

b) Show that T'(a) is unitary and show that T(a) has eigenvalues of of the form e*®* where
¢ is real (You can assume that P is hermitian).
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c) Consider the Hamiltonian which is periodic under shifts by a —

2 oo a
H= f—m + > v{-na) (0.11)

Here you can assume that V(z) goes exponentially fast to zero as |z| — oo (This
assumption makes the sum over n convergent). You can also assume that V' (z) can be
expanded in a power series.

Prove that T(a) commutes with H.
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d) It follows from the results in part c) that the Hamiltonian H and T'(a) can be
diagonalized simultaneously. You can assume that there are eigenstates | E, k) which satisfy

H|E,kY = E|Ek) (0.12)
T(a) | E,k) = e *|E k) (0.13)

For the wave functions in position space define the following combination
u(z) = (z | E, k)e ™" (0.14)

Show that u(x) is a periodic function with period a, i.e.

uk(z + a) = ug(z) (0.15)

This is the Bloch’s theorem for periodic potentials (i.e. an energy eigenstate can be written
as a Bloch wave times a periodic function).
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