QUESTION 2: [40 points]

a) Consider the operator

$$T(a) = \exp(-iaP/\hbar) \tag{0.9}$$

Where a is a constant and P is the momentum operator Show that

b) Show that T(a) is unitary and show that T(a) has eigenvalues of the form $e^{i\phi}$ where ϕ is real (You can assume that P is hermitian).

$$T(a) + T(a) = e^{iaP/k} e^{-iaP/k} = 1$$

$$Same Pa T(a) T(a) + = DT unitary$$

$$(4|T(a) 14) = (4) 14) = \lambda$$

$$(4|T(a) 14) * = (4|T(a)^{4} 14) = \lambda$$

$$(4$$

c) Consider the Hamiltonian which is periodic under shifts by a

$$H = \frac{P^2}{2m} + \sum_{n=-\infty}^{\infty} V(\mathbf{X} - na) \tag{0.11}$$

Here you can assume that V(x) goes exponentially fast to zero as $|x| \to \infty$ (This assumption makes the sum over n convergent). You can also assume that V(x) can be expanded in a power series.

Prove that T(a) commutes with H.

$$V(x) = \sum_{n}^{\infty} C_{n} x^{n}$$

$$T^{+} X T = X + \alpha$$

$$T^{+} X^{n} T = T^{+} X T T^{+} T T^{+} X T$$

$$= (X + \alpha)^{n}$$

$$= (X + \alpha)^{n}$$

$$= (X + \alpha)^{n}$$

$$= V(X + \alpha)^{n}$$

$$= V(X + \alpha)^{n}$$

$$= \sum_{n=\infty}^{\infty} V(X + \alpha - n\alpha)$$

$$= \sum_{n=\infty}^{\infty} V(X + \alpha - \alpha)$$

$$= \sum_{n=\infty}^{\infty} V(X + \alpha$$

d) It follows from the results in part c) that the Hamiltonian H and T(a) can be diagonalized simultaneously. You can assume that there are eigenstates $|E,k\rangle$ which satisfy

$$H \mid E, k \rangle = E \mid E, k \rangle \tag{0.12}$$

$$T(a) \mid E, k \rangle = e^{-ika} \mid E, k \rangle \tag{0.13}$$

For the wave functions in position space define the following combination

$$u_k(x) = \langle x \mid E, k \rangle e^{-ikx} \tag{0.14}$$

Show that $u_k(x)$ is a periodic function with period a, i.e.

$$u_k(x+a) = u_k(x) \tag{0.15}$$

This is the Bloch's theorem for periodic potentials (i.e. an energy eigenstate can be written as a Bloch wave times a periodic function).

$$U_{X}(X+a) = \langle X+a|EA \rangle e^{-ih(X+a)}$$

$$= \langle EA, | X+a \rangle^{X} e^{-il(X+a)}$$

$$= \langle EA, | T | X \rangle^{X} e^{-il(X+a)}$$

$$= \langle X|T^{+}|E, l \rangle e^{-ihx} e^{-ila}$$

$$= \langle X|EA \rangle e^{-ila}$$

$$=$$