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So]ution: o
(3) When the length of the chain is nz, there are m = nz/a segments

pa,rallel to the chain; so the microscopic state number is

. n!
(1=Cn = mi(n — m)!
We have
S =kln()
n!
= kln 7 .
oV [ — Zp !
(2n) (n—Zn)!

(b) Under the action of stress F, the energy difference between the
vertical and parallel states of a segment is Fa. The mean length of a

segment is
aeFalkT

= 1+ eFalkT

l

80 that

naeFalkT

1 +eFa/kT )

nr=nl=
(c) At high temperatures,

1 1Fa
L=nxz=na 3 Eﬁ ;

WhiCh is HOOke’S Law,



QUESTION 4 [14 points]

(a) 3 pts
For any system of fermions at chemical potential y and temperature 7', show that the probability
for finding an occupied state of energy ¢ + p is the same as that for finding an unoccupied state
of energy p —¢.

Consider now a system of non-interacting Dirac fermions of spin 1/2 and mass m. One-particle
states at momentum p come in pairs of positive and negative energy,

ex(p) = £/ m2c* + p3c?

for each value of the spin quantum number. At 7" = 0, all negative energy Dirac states are filled
(the so-called Dirac-sea), and all positive energy states are empty, so that p(7" = 0) = 0.

(b) 3 pts Using the result of (a) compute the chemical potential at arbitrary temperature 7.
(c) 3 pts Compute (an integral representation for) the mean excitation energy E(T") — E(0)
(d) 2 pts Evaluate the integral in part (c) for m = 0 and evaluate the specific heat Cly;

(e) 3 pts Describe the qualitative change in the specific heat at low temperature when m # 0.

Solution to Questions 4

(a) The probabilities for finding occupied states at energy p + ¢ and energy p — e are respec-

tively given by,
1 1

ehe +1 M=) =

which are clearly related by n(u—¢) = 1 —n(u+e¢), and the right side is precisely the probability
for finding the state unoccupied at energy p + . QED.

n(p+e)=

(b) Total particle number is unchanged at finite temperature, and using the above particle-
hole symmetry, the chemical potential remains zero at any temperature, u(7) = 0.

(c) Formally, the internal energy is given by summing over the contributions from positive
and negative energy states, with their associated occupation numbers,

B(T) =2V [ o (s @)+ <.(0) + - () + - ()

where the prefactor of 2 arises because of the electron spin degeneracy. We now use ¢_(p) =
—e.(p) as well as the result of (a), namely n(u +c_(p)) = n(u — e (p)) =1 —n(p + +(p))-
Hence, we have

B(T) =2V [ b (220 (0)nti+ 2. 0) +-(0)
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Omitting the T-independent contribution of the term in e_(p) in the integrand amounts to
subtracting the energy of the negative energy Dirac sea. Also, setting now p = 0 by the result
of (b), we find,

P)

_ +
BE(T)-F 4V/ 27rh efe+(P) 41

The multiplicity is explained as follows. One factor of 2 arises from spin 1/2, while the other
arises from the contributions of both positive and negative energy states.

(d) For e, (p) = ¢|p|, we have,

3

_ cp| 2V 1 [
ET)-F 4V/ 27?7'1 efelpl + 1 72h3¢3 (kT) /0 e

e +1
The value of the last integral is 6¢(4) = 71/15, but it is not essential that it be evaluated.

(e) When m # 0, the energy spectrum develops a gap of size 2mc?, so that there must be a
suppression factor exp{—mc?/kT} at low temperatures.



Solution 4.2. a) In order to calculate the specific heat of a classical
system, it is necessary only to know the number of degrees of freedom
of the system. The specific heat then follows from an application of the
equipartition theorem.

For the case of a heteronuclear diatomic molecule, there are some
subtleties to do with quantum mechanics that we cannot ignore. Clas-
sically the angular momentum vector is free to point in any direction
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with respect to the orientation of the molecule, and since the rotational
e (T2 2 2 : ;
energy 18 3(Niwi + Iwd + Iaw3), one might naively expect there to be
three degrees of freedom. However, it is a consequence of quantum me-
chanics that a system cannot rotate about an axis of continuous sym-
metry, which in the case of a diatomic molecule means that there can
be no component of angular momentum along the axis joining the two
atoms (see Burcham). This microscopic constraint has a macroscopi-
cally observable effect, namely that the number of degrees of freedom
of rotation is reduced from three to two. (Often the same result is
“derived” classically, by arguing that the moment of inertia about the
symmetry axis is zero.)
The classical average internal energy is given by

(E) = (# degrees of freedom) x %kT = kT, (13.8)

where k is Boltzmann’s constant. Therefore the specific heat is given
by

_UE) _

b) The partition function 2 is defined to be the sum of the Boltz-
mann factor e—E/*T over all distinct quantum states of the system. For

a system with energy levels E; = (%/2I)j(j + 1), each having degen-
eracy (25 + 1), we find

Z =Y (2 +1)ePH, (13.10)
3=0
where 8 = 1/kT. The average energy (E) is defined as
S Ej(2] +1)e?"

§=0

(2 +1)e PR

j=0

- (13.11)

o8

(E)

c)As T — 0 (B — o0), the occupation numbers of the higher

excited states will be heavily suppressed by the Boltzmann factor, and



: ture we can replace the infinjt
iently low tempera : . ¢ oy
for suffic (13.10) and (13.11) by finite sums over just the groypq star:

ations
:gz the first excited state. We get
-BE
so that
%367, (13.13)

where we have assumed that 3e ™%t & 1 and used the small-z expay.
sion In(1 + z) ~ z. Therefore, at low temperatures,

0 -BE -E, /kT
(B)  — 536" = 3By~ B M (13.14)
We can differentiate this to find the low-temperature specific heat,
_d(E) _3E} _gpr
C = 5 = Tra® : (13.15)

We note that for small T, the exponential suppression dominates over
the 1/T? prefactor, and C — 0 as T — 0.

Our derivation is valid provided that the occupation number of the
second level is far smaller than that of the first (5e%F2 « 3e~PEt), and
that the occupation number of the first level is much smaller than unity
(3e7PEr & 1). In fact both of these yield the same condition,

hz
kT < T (13.16)

d) In the hrmt T > (0.0] (ﬁ - O), many states will become hCaVlly
populated and contribute to the sums in the partition function (13.10)
and }:he average energy (13.11). Under these circumstances it becomes
!egftlmate to approximate the discrete sum by an integral, with vat-
ishingly small error for large enough T'. Therefore we can write

Zn f: 4 (25 +1)exp (—-ﬂz—’fj(j + 1)) : (1317)
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ate to obtain

We iﬂtegr
_of BR? . © o
Z 7% ["P( TEAR ))]0 T (13.18)
that
50 InZ =~ —1np + constant_ (13.19)
Thus we find for the average internal energy
0 1
FE =——an'&‘—=kT, )
(E) 5 7 (13.20)

which we recognize as the classical result. Therefore the specific heat
at high temperatures is simply

d(E)
dT
This result is valid provided the Boltzmann factor is la,rge2 up to valu.es
of j much greater than unity, that is BE; < 1, or kT > h*/I. There s,

of course, another limit to the validity of our expression,.narrfelty that
the temperature must not be so high that the molecule dissociates.

C= ~ k. (13.21)



Chapter 11

Electricity &
Magnetism—Solutions

Solution 2.1. This problem combines two of the simplest geometries
which textbooks use to demonstrate the use of image charges to solve
boundary value problems, so we should not be surprised that image
charge methods work in this case as well. Let the line through the
charge q and the center of the bulge be the z-axis, with the origin such
that the charge is at z = p (Figure 11.1).

+q 1 z=p

Figure 11.1.

ge game: We want to replace the

We recall the rules of the image char
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conductor with a distribution of “virtual charges” in such a way that
the boundary conditions are satisfied. (See Jackson, Chapter.2.) If. we
ignore the plane for a moment and concentrate on tl‘le hc:rmsphenca,l
bulge, it is easy to check that a second charge —¢', with ¢’ = qa/p, at
the point z = p' = a?/p leaves the surface of the bulge at a constant po-
tential V = 0. This is the standard solution to the problem of a charge
outside a spherical conductor. Now the trick is to introduce two more
image charges: one of charge —q at point z = —p, and one of c.ha,rge
¢ at point z = —p'. These two charges do not change the potential on
the hemispherical bulge, but now the potential also vanishes everwhere
on the infinite plane.

The beauty of image-charge techniques now becomes apparant. The
original charge feels the same force from a conducting infinite plane with
a hemispherical bulge as it would from a set of three charges with the
magnitudes and positions given above. So the force in the z-direction
is given by

F=y% (11.1)

2)
« T

where the sum is over the set of image charges. Our final answer is
—qq’ qq' g
F = + -
(p=?)  (p+p) (290

_qz( ap  ap +1
(9 — a?)2 (7 + a?)2 ) (11.2)




golution 2.5. We wish to find the angular velocity of the wheel w(t)
and the current in the circuit I(t). First we define the current to be
positive if it flows out of the positive terminal of the battery. Let the
origin of our coordinate system be at the hub of the wheel and % be

.rallel to B. Then if r gives the position along the current-carrying
spoke of the wheel, the force on an infinitesimal element of this arm is

dF = %dr x B. (11.52)
The torque on the wheel is therefore
JdJ2=/r><dF= oRzgrdr 7, (11.53)
which leads to )
Jorz = %I-Z-z. (11.54)

and I(t). To find 2 second

We now have one equation relating « t)
€cq 5 ( al to the power

¢quation, we set the power delivered by the battery equ
absorbed by the rest of the circuit:

: d }_ 2) (11.55)
]V_—_I(LI)JrEE(zJ‘” :

0
r (11.56)

I (V — LI) = wa



Differentiating the torque equation (11.54) gives

5o ()
I=Ju\gm) (11.57)

to equation (11.56) and using (11.54) ¢,

Substituting this expression in
ds to a second order differential equatiop

cancel a common factor of I lea

for w(t):
@ _@ : _}_w = R2B V.
% ) 7”7~ 2T (11.5)
This equation has the general solution
: 2cV
t)=C -
w(t) = C cos Nt + Dsin{dt + BRE’ (11.59)

where C and D are const : T
e constants to be determined from the initial condi-

Q= R?’B
To find the coeffici %Ly
Because I(0) = OCI:;SIIZ e nOt.e jchat at ¢ = 0 there is no current.
tion (11.54), we have g ecailse w is proportional to I(t) from equa-
, ve w(0) = 0 and thus D = 0. To find C we note

that at £ = 0 the whee] i
1s at rest, and th —
C =-2V ) us w(0) = 0.
2cV/BR?, and the final solution for w(t) is( ) = 0. Therefore

2cV
w(t) = ——
(t) BR2(1 — cos {It). (11.61)

(11.60)

We then use equation (11.54) to find

Ita, (11.55) Wh ]
b ge chan . . en setting
choff’s law), one myst includcg:‘l:r :r);l od the circuit equal to zero (Kir-

thr : ]
ough the circuit, ltage induced by the changing flux




[1.] An electron is bound to a spring with spring constant k.

(a) Calculate both the differential and total scattering cross sections for unpolarized EM

waves incident on the electron.

SOLUTION: Without loss of generality, I can consider a plane wave with polarization
in the £ direction. The equation of motion for the electron in the plane wave is then:

moy, = —kx — eE, exp(—iwt)

We'll assume that we have time harmonic plane waves and that the response of the elec-
tron in the long time limit is at the same frequency of the wave (strictly speaking we’d
need some damping here to kill of the initial transient at the resonant frequency, but we
can consider this as the limit of very small damping coefficient). Then the solution for
the position of the electron as a function of time is:

_ —eE,exp(—iwt)
 om(w? - w?)

We can take several approaches to get the cross section from this. One way is to recall
the angular radiation pattern for electric dipole radiation:

4P _ M

dQy — 16m%c
The dipole moment of our oscillating electron is p = —ex%
So

|? X pret|2

arP o e*E2wt
dQ  167m2c m?(w? — w?)
Taking a time average and rearranging terms gives us:

ar\ ﬁceoligw‘L
aQ/ 2 w?— w?

2

5 |7 x 2| [exp(—iwt)]

7 x 2|



(b)

Where

e2

Te = 47re,mc?
The differential cross section is just the angular distribution of radiation power divided
by the incident pointing flux, (|Sinc|) = c€oE5/2

aQ Sincl) (w2 — w?)?

<dcr>: <<gg> r2wt 17 x 2

This is for light polarized in the £ direction. We re-write the angular term:

| = (1—(12-@0 2)

Where k is the wavenumber of the emitted /scattered radiation (along 7) and ¢, is the
polarization vector of the incident wave (which has wavenumber k,. We’ll argue that,
on average, unpolarized light contains equal amounts of light with polarization in the
plane defined by k and k, () and light with polarization perpendicular to this plane
(é1). Then the total unpolarized differential cross section is

2

)

k-é;

do r2w* 1 ~ 120 1
<do>unpol = oy (20 [Fal)+ 50 -

rPwt 1
— (6026—7012)25(1 + cos?0)
0

Where 6 is the angle between k. The total cross section is then just
unpol
2,4

do
<U>unpol = /dQ <m>
rew

1
= /Sln gdgd(l)mi(l + COS2 9)
[
8t ,  wh
71/' e —
3 ‘(w)—w?)?

In what limit should the total cross section equal the Thomson scattering cross section?
Take this limit and confirm that it results in the Thomson scattering cross section.

SOLUTION: The correct limit is w > w,, where w, is the resonant frequency of the
electron-spring system. In this limit, the electron behaves like a free particle. Taking
this limit in our expression above yields:

871 ,

<0-> unpol w;g 3 Te

Which is the Thomson scattering cross-section.

2



(c) In what limit should the total cross section yield Rayleigh scattering? Take this limit
and confirm that the cross section is consistent with Rayleigh scattering (what is the
frequency dependence you expect?)

SOLUTION: The correct limit is w < w,, where w, is the resonant frequency of the
electron-spring system. In this limit, you find an w* dependence in the scattering cross-
section (leading to the blue sky explanation):

87wt
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