


QUESTION 4 [14 points]

(a) 3 pts
For any system of fermions at chemical potential µ and temperature T , show that the probability
for finding an occupied state of energy ε+ µ is the same as that for finding an unoccupied state
of energy µ− ε.

Consider now a system of non-interacting Dirac fermions of spin 1/2 and massm. One-particle
states at momentum p come in pairs of positive and negative energy,

ε±(p) = ±
√

m2c4 + p2c2

for each value of the spin quantum number. At T = 0, all negative energy Dirac states are filled
(the so-called Dirac-sea), and all positive energy states are empty, so that µ(T = 0) = 0.

(b) 3 pts Using the result of (a) compute the chemical potential at arbitrary temperature T .

(c) 3 pts Compute (an integral representation for) the mean excitation energy E(T )−E(0)

(d) 2 pts Evaluate the integral in part (c) for m = 0 and evaluate the specific heat CV ;

(e) 3 pts Describe the qualitative change in the specific heat at low temperature when m ̸= 0.

Solution to Questions 4

(a) The probabilities for finding occupied states at energy µ+ ε and energy µ− ε are respec-
tively given by,

n(µ+ ε) =
1

eβε + 1
n(µ− ε) =

1

e−βε + 1

which are clearly related by n(µ−ε) = 1−n(µ+ε), and the right side is precisely the probability
for finding the state unoccupied at energy µ+ ε. QED.

(b) Total particle number is unchanged at finite temperature, and using the above particle-
hole symmetry, the chemical potential remains zero at any temperature, µ(T ) = 0.

(c) Formally, the internal energy is given by summing over the contributions from positive
and negative energy states, with their associated occupation numbers,

E(T ) = 2V
∫ d3p

(2πh̄)3

(

ε+(p)n(µ+ ε+(p)) + ε−(p)n(µ+ ε−(p))
)

where the prefactor of 2 arises because of the electron spin degeneracy. We now use ε−(p) =
−ε+(p) as well as the result of (a), namely n(µ + ε−(p)) = n(µ − ε+(p)) = 1 − n(µ + ε+(p)).
Hence, we have

E(T ) = 2V
∫ d3p

(2πh̄)3

(

2ε+(p)n(µ+ ε+(p)) + ε−(p)
)
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Omitting the T -independent contribution of the term in ε−(p) in the integrand amounts to
subtracting the energy of the negative energy Dirac sea. Also, setting now µ = 0 by the result
of (b), we find,

E(T )−E(0) = 4V
∫ d3p

(2πh̄)3
ε+(p)

eβε+(p) + 1

The multiplicity is explained as follows. One factor of 2 arises from spin 1/2, while the other
arises from the contributions of both positive and negative energy states.

(d) For ε+(p) = c|p|, we have,

E(T )−E(0) = 4V
∫ d3p

(2πh̄)3
c|p|

eβc|p| + 1
=

2V

π2h̄3c3
(kT )4

∫ ∞

0
dx

x3

ex + 1

The value of the last integral is 6ζ(4) = π4/15, but it is not essential that it be evaluated.

(e) When m ̸= 0, the energy spectrum develops a gap of size 2mc2, so that there must be a
suppression factor exp{−mc2/kT} at low temperatures.
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Solution 2.5. We wish to find the angular velocity of the wheel w(t)
nd the current in the circuit J( t). First we define the current to be

;ositive if it flows �ut of the positive terminal of the battery. Let the

origin of our coordinate system be at the hub of the wheel and z be

parallel to B. Then if r gives the position along the current-carrying 

spoke of the wheel, the force on an infinitesimal element of this arm is 

I 
clF = -dr x B. (11.52) 

The torque on the wheel is therefore 

which leads to 

IR I B ,. JWZ = j r x dF = Jo �rdr z,

IBR
2

A 
A 

Jwz == z. 

(11.53) 

(11.54) 
2c 

. ( ) and J( t) To find a second
We now have one equation relating w t 

· al to the power
. d 1· d b the battery equ 

equation, we set the power e 1vere Y 
absorbed by the rest of the circuit: 

IV= I (Li)+ ft G1w
2)'

or 

I (V - Li) == JwW.

(11.55) 

(11.56) 

-





[1.] An electron is bound to a spring with spring constant k.

(a) Calculate both the differential and total scattering cross sections for unpolarized EM
waves incident on the electron.

SOLUTION: Without loss of generality, I can consider a plane wave with polarization
in the x̂ direction. The equation of motion for the electron in the plane wave is then:

mv̇x = −kx− eEo exp(−iωt)

We’ll assume that we have time harmonic plane waves and that the response of the elec-
tron in the long time limit is at the same frequency of the wave (strictly speaking we’d
need some damping here to kill of the initial transient at the resonant frequency, but we
can consider this as the limit of very small damping coefficient). Then the solution for
the position of the electron as a function of time is:

x =
−eEo exp(−iωt)

m(ω2
o −ω2)

We can take several approaches to get the cross section from this. One way is to recall
the angular radiation pattern for electric dipole radiation:

dP
dΩ

=
µo

16π2c
|r̂× p̈ret|2

The dipole moment of our oscillating electron is p = −exx̂
So

dP
dΩ

=
µo

16π2c
e4E2

o ω4

m2(ω2
o −ω2)2 |r̂× x̂|2 |exp(−iωt)|2

Taking a time average and rearranging terms gives us:〈
dP
dΩ

〉
=

r2
e

2
cεoE2

o ω4

ω2
o −ω2 |r̂× x̂|2



Where

re =
e2

4πεomc2

The differential cross section is just the angular distribution of radiation power divided
by the incident pointing flux, 〈|Sinc|〉 = cεoE2

0/2

〈
dσ

dΩ

〉
=

〈
dP
dΩ

〉
〈|Sinc|〉

=
r2

e ω4

(ω2
o −ω2)2 |r̂× x̂|2

This is for light polarized in the x̂ direction. We re-write the angular term:

|r̂× x̂|2 =
∣∣∣k̂× êo

∣∣∣2 =

(
1−

∣∣∣k̂ · êo

∣∣∣2)
Where k is the wavenumber of the emitted/scattered radiation (along r̂) and êo is the
polarization vector of the incident wave (which has wavenumber ko. We’ll argue that,
on average, unpolarized light contains equal amounts of light with polarization in the
plane defined by k and ko (ê‖) and light with polarization perpendicular to this plane
(ê⊥). Then the total unpolarized differential cross section is

〈
dσ

dΩ

〉
unpol

=
r2

e ω4

(ω2
o −ω2)2

(
1
2
(1−

∣∣∣k̂ · ê‖∣∣∣2) + 1
2
(1−

∣∣∣k̂ · ê⊥∣∣∣2))
=

r2
e ω4

(ω2
o −ω2)2

1
2
(1 + cos2 θ)

Where θ is the angle between k̂. The total cross section is then just

〈σ〉unpol =
∫

dΩ
〈

dσ

dΩ

〉
unpol

=
∫

sin θdθdφ
r2

e ω4

(ω2
o −ω2)2

1
2
(1 + cos2 θ)

=
8π

3
r2

e
ω4

(ω2
o −ω2)2

(b) In what limit should the total cross section equal the Thomson scattering cross section?
Take this limit and confirm that it results in the Thomson scattering cross section.

SOLUTION: The correct limit is ω � ωo, where ωo is the resonant frequency of the
electron-spring system. In this limit, the electron behaves like a free particle. Taking
this limit in our expression above yields:

〈σ〉unpol −→ω�ωo

8π

3
r2

e

Which is the Thomson scattering cross-section.
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(c) In what limit should the total cross section yield Rayleigh scattering? Take this limit
and confirm that the cross section is consistent with Rayleigh scattering (what is the
frequency dependence you expect?)

SOLUTION: The correct limit is ω � ωo, where ωo is the resonant frequency of the
electron-spring system. In this limit, you find an ω4 dependence in the scattering cross-
section (leading to the blue sky explanation):

〈σ〉unpol −→ω�ωo

8π

3
r2

e
ω4

ω4
o
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