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2. (Quantum Mechanics)

A spin-1/2 particle of mass m is restricted to move in the x-direction only. It moves in a potential whose
x dependence is that of an infinite square well of width 2L

V (x) =

{
0 −L ≤ x ≤ L
∞ otherwise

The particle also couples to a magnetic field via a term in the Hamiltonian HB = µ0σ ·B, where σi are
the Pauli matrices. The magnetic field takes the form

B =

{
B ẑ −L ≤ x ≤ 0

B x̂ 0 < x ≤ L
(68)

What are the energy levels of the particle to first order in B?
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Solution: Solution by Jonah Hyman (jthyman@g.ucla.edu)

This problem concerns the one-dimensional particle in a box (infinite square well potential). Here
is what you need to know about the particle in a box for this problem:

One-dimensional particle in a box (infinite square well potential)
For a particle in a one-dimensional box of length a, the energy eigenfunctions of the particle
consist of sines and cosines that are equal to zero at both sides of the box, i.e., that have al-
lowed wavenumbers

kn =
nπ

a
for n = 1, 2, 3, . . . (69)

The eigenenergies are then given by

En =
p2n
2m

=
ℏ2k2n
2m

=
ℏ2π2n2

2ma2
for n = 1, 2, 3, . . . (70)

Here is a graph of the first few eigenfunctions. Note that for n odd, the eigenfunctions are even
functions, as measured about the center of the box. For n even, the eigenfunctions are odd func-
tions, as measured about the center of the box.

The problem is a first-order degenerate time-independent perturbation theory problem: Even though
the one-dimensional particle in a box has nondegenerate energy levels En, the addition of the
particle’s spin creates a degeneracy since the infinite square well potential does not depend on the
spin of the particle. Recognizing that the problem is a degenerate perturbation theory problem tells
us that we need to use the following method:

For first-order time-independent degenerate perturbation theory problems, diagonalize the ma-
trix

〈
n(i)
∣∣V ∣∣n(j)〉. Here, V is the perturbation Hamiltonian.

∣∣n(i)
〉
is a basis vector of the de-

generate subspace of eigenvectors of the unperturbed Hamiltonian H0 that have energy En.
The eigenvalues of

〈
n(i)
∣∣V ∣∣n(j)〉 are the energy shifts (to first order) caused by the perturbation

V .
The eigenvectors of

〈
n(i)
∣∣V ∣∣n(j)〉 are the lowest-order perturbative approximation of the eigen-

states of the full Hamiltonian H0 + V .

Here, the perturbation Hamiltonian is given by the problem statement:

V (x) = µ0σ ·B =

{
µ0Bσz −L ≤ x ≤ 0

µ0Bσx 0 < x ≤ L
(71)

Note that V is piecewise constant, and it only depends on whether the particle is in the left half or
the right half of the box. Since V (x) only depends on whether the particle is in the left or right half
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of the box, we can simplify the spatial wavefunction of the particle:

|ψ⟩ = ℓ |L⟩+ r |R⟩ (72)

where |L⟩ represents the particle being in the left side of the box and R represents the particle being
in the right side of the box. Here, we have ⟨L|L⟩ = ⟨R|R⟩ = 1 and ⟨L|R⟩ = ⟨R|L⟩ = 0, since there
is no overlap between the two states. Note also the following:

• Each of the energy eigenfunctions for the particle in a box ψn(x) are either even or odd, as
measured about the center of the box.

• The probability density of finding the particle in a location x is given by |ψn(x)|2.

• Therefore, assuming the particle is in an energy eigenfuction for the infinite square well poten-
tial, the probability of finding the particle in the left half of the box is equal to the probability
of finding the particle in the right half of the box.

Therefore, if |ψ⟩ is an energy eigenstate of the unperturbed Hamiltonian (the one-dimensional infinite
square well potential), we have

|ψn⟩ = ℓ |L⟩+ r |R⟩ with |ℓ|2 = |r|2 =
1

2
(73)

since the particle is equally likely to be found in either side of the box.

The degenerate subspace of all states that have the same unperturbed energy En is just the set
of all particles with spatial state given by |ψ⟩n and different spin states. It is spanned by the vectors

|ψn, ↑⟩ = (ℓ |L⟩+ r |R⟩) |↑⟩ and |ψn, ↓⟩ = (ℓ |L⟩+ r |R⟩) |↓⟩ (74)

The perturbation Hamiltonian (71) is equal to µ0Bσz if the particle is in state |L⟩, and it is equal
to µ0Bσx if the particle is in state |R⟩. It does not change the spatial wavefunction of the particle.
Therefore, we can write the perturbation Hamiltonian in Dirac notation as

V = µ0B

(
|L⟩σz ⟨L|+ |R⟩σx ⟨R|

)
(75)

We can start to calculate the matrix elements of V . Let s1 and s2 be stand-ins for either spin-up ↑
or spin-down ↓. Then, by (75),

V |ψn, s2⟩ = µ0B

(
|L⟩σz ⟨L|+ |R⟩σx ⟨R|

)
(ℓ |L⟩+ r |R⟩) |s2⟩

= µ0B

(
ℓ |L⟩σz |s2⟩+ r |R⟩σx |s2⟩

)
as ⟨L|L⟩ = ⟨R|R⟩ = 1 and ⟨L|R⟩ = 0 (76)

Taking the inner product of these states with the basis state |ψn, s1⟩, we get

⟨ψn, s1|V |ψn, s2⟩ = µ0B

(
ℓ∗ ⟨L|+ r∗ ⟨R|

)
⟨s1| ·

(
ℓ |L⟩σz |s2⟩+ r |R⟩σx |s2⟩

)
= µ0B

(
ℓ∗ℓ ⟨s1|σz|s2⟩+ r∗r ⟨s1|σx|s2⟩

)
as ⟨L|L⟩ = ⟨R|R⟩ = 1 and ⟨L|R⟩ = 0

=
µ0B

2
( ⟨s1|σz|s2⟩+ ⟨s1|σx|s2⟩) since ℓ∗ℓ = |ℓ|2 =

1

2
and r∗r = |r|2 =

1

2
(77)
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The matrix elements ⟨s1|σz|s2⟩ and ⟨s1|σx|s2⟩ are just elements of the Pauli matrices, as they act

on the spinors

(
a
b

)
∼= a |↑⟩ + b |↓⟩ Putting all of this together, we can write the restriction of V to

the degenerate subspace spanned by |ψn, ↑⟩ and |ψn, ↓⟩ in matrix form:

V ∼=
(
⟨ψn, ↑|V |ψn, ↑⟩ ⟨ψn, ↑|V |ψn, ↓⟩
⟨ψn, ↓|V |ψn, ↑⟩ ⟨ψn, ↓|V |ψn, ↓⟩

)
=
µ0B

2

[(
⟨↑|σz|↑⟩ ⟨↑|σz|↓⟩
⟨↓|σz|↑⟩ ⟨↓|σz|↓⟩

)
+

(
⟨↑|σx|↑⟩ ⟨↑|σx|↓⟩
⟨↓|σx|↑⟩ ⟨↓|σx|↓⟩

)]
by (77)

=
µ0B

2

[(
1 0
0 −1

)
+

(
0 1
1 0

)]
by definition of the Pauli matrices

=
µ0B

2
A for A ≡

(
1 1
1 −1

)
(78)

The eigenvalues of V are the first-order energy shifts under the perturbation. To find the eigenvalues

of V , set the characteristic polynomial of the matrix A ≡
(
1 1
1 −1

)
equal to zero:

0 = det(A− λI)

= det

(
1− λ 1
1 −1− λ

)
= (1− λ)(−1− λ)− (1)(1)

=
(
λ2 − 1

)
− 1

0 = λ2 − 2 (79)

The solutions of this equation, the eigenvalues of A, are given by

λ± = ±
√
2 (80)

V is just equal to µ0B/2 times A, so the eigenvalues of V are equal to

∆E± =
µ0B

2
λ±

=
µ0B

2

(
±
√
2
)

∆E± = ±µ0B√
2

(81)

All that remains is to add the unperturbed energy levels En to the energy shifts ∆E±. Using (70)
and bearing in mind that the box is of width 2L, not L, we get that the unperturbed energy levels
are

En =
ℏ2π2n2

2m(2L)2
=

ℏ2π2n2

8mL2
for n = 1, 2, 3, . . . (82)

Therefore, the energy levels of the particle to first order in B are

En,± =
ℏ2π2n2

8mL2
± µ0B√

2
for n = 1, 2, 3, . . . (83)

Above, we used the kets |L⟩ and |R⟩ to represent which side of the box the particle is in. This
approach doesn’t require us to know the precise form of the particle-in-a-box wavefunctions—just
the fact that each wavefunction is either even or odd—and it doesn’t require us to take any integrals.
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It is instructive, though, to demonstrate how to derive the matrix elements in (78) using the exact
wavefunctions of the particle in a box. Recall that the wavefunctions of the particle in a box are the
sine and cosine functions that are equal to zero at both sides of the box (in this case, x = ±L). Since
the box is of width 2L, the allowed wavenumbers are kn = nπ/(2L). We know from the diagram
above that the parity of each eigenfunction ψn is the opposite of the parity of n (so the n = 1
eigenfunction is a cosine function, the n = 2 eigenfunction is a sine function, and so on). From this
information, we can read off the eigenfunctions:

ψn(x) =

{
Nn cos

(
nπx
2L

)
for n = 1, 3, 5, . . .

Nn sin
(
nπx
2L

)
for n = 2, 4, 6, . . .

(84)

Here, the normalization constant Nn is defined so that∫ L

−L

dx |ψn(x)|2 = 1 (85)

With this information, we can find the matrix elements of V . Using (71)

V (x) =

{
µ0Bσz −L ≤ x ≤ 0

µ0Bσx 0 < x ≤ L

we can write (where s1 and s2 are stand-ins for either spin-up or spin-down)

⟨ψn, s1|V |ψn, s2⟩ =
∫ L

−L

dx

(
ψ∗
n(x) ⟨s1|

)
V (x)

(
ψn(x) |s2⟩

)
=

∫ 0

−L

dxψ∗
n(x) ⟨s1|V (x)ψn(x) |s2⟩+

∫ L

0

dxψ∗
n(x) ⟨s1|V (x)ψn(x) |s2⟩

= µ0B

[∫ 0

−L

dxψ∗
n(x) ⟨s1|σzψn(x) |s2⟩+

∫ L

0

dxψ∗
n(x) ⟨s1|σxψn(x) |s2⟩

]
Since σz does not act on the spatial component of the wavefunction, we can pull ψn(x) out of the
spin matrix element and combine it with its conjugate ψ∗

n(x) to get |ψn(x)|2:

⟨ψn, s1|V |ψn, s2⟩ = µ0B

[∫ 0

−L

dx |ψn(x)|2 ⟨s1|σz |s2⟩+
∫ L

0

dx |ψn(x)|2 ⟨s1|σx |s2⟩

]
⟨s1|σi|s2⟩ is just the matrix element of the Pauli matrix σi. This gets us to

⟨ψn, s1|V |ψn, s2⟩ = µ0B

[(
1 0
0 −1

)∫ 0

−L

dx |ψn(x)|2 +
(
0 1
1 0

)∫ L

0

dx |ψn(x)|2
]

(86)

where the matrices act on a spinor

(
a
b

)
∼= a |↑⟩+b |↓⟩. Since ψn(x) is either even (a cosine function)

or odd (a sine function), we must have

|ψn(−x)|2 = |±ψn(x)|2 = |ψn(x)|2 (87)

so |ψn(x)|2 is an even function. Using information about the integral of an even function, we get∫ 0

−L

dx |ψn(x)|2 =

∫ L

0

dx |ψn(x)|2 =
1

2

∫ L

−L

dx |ψn(x)|2

=
1

2
by the normalization

∫ L

−L

dx |ψn(x)|2 = 1 (88)
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Plugging this into (86), we get the same result as when we used the kets |L⟩, |R⟩:

⟨ψn, s1|V |ψn, s2⟩ =
µ0B

2

[(
1 0
0 −1

)
+

(
0 1
1 0

)]
=
µ0B

2

(
1 1
1 −1

)
(89)

The rest of the calculation proceeds as before.
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