WRITTEN COMPREHENSIVE EXAMINATION FOR THE MASTER’S
DEGREE AND QUALIFYING EXAMINATION FOR THE PH.D. DEGREE
DEPARTMENT OF PHYSICS

Wednesday, September 19, and Thursday, September 20, 2001
PART I - WEDNESDAY, SEPTEMBER 19

Important — please read carefully.
The exam (8 hours) is in two parts:
Partl Quantum Mechanics, Thermodynamics, Statistical Mechanics
September 19 7 Problems — DO ALL PROBLEMS.
9:00-1:00 This part will be collected at the end of four hours.
Each problem counts for 20 points; the total is 140.
PART 2 Electromagnetic Theory, Thermodynamics,Statistical Mechanics
September 20 7 Problems — DO ALL PROBLEMS.
9:00-1:00 This part will be collected at the end of four. hours.
Each problem counts for 20 points; the total is 140.
Instructions
1) Thisis a closed book exam and calculators are not be used.
2) Work each problem on a separate sheet of paper. Use one side only.

3) Print your name and problem number on EACH AND EVERY page. (Note:
Pages without names may not be counted.)

4) Return the problem page as the first page of your answers.

5) If a part of any question seems ambiguous to you, state clearly what your interpretations and
answer the question accordingly.



1. Quantum Mechanics.
Consider a simple harmonic oscillator, with Hamiltonian
2

D 1 2
H=—4 -
2m+2mw T

2

which is in its n*® energy eigenstate, H |n) = (n + 1/2)kw |n).
(a) What is (n|p?|n)?
(b) What is (n|z?|n)?



2. Quantum Mechanics.

The Hamiltonian for a system é_onsisting of three-distinguishable spin one

particles is
H=A(Sl°82+52-53+83'sl)

where S; is the spin of the ith particle, and all the components of the spin of
one particle commute with all the components of the spins of the other two.

(a) How many independent states are there?
(b) What are the eigenvalues of H?

(c) What are the degeneracies of each energy level?



3. Quantum Mechanics.

The electron neutrino |v,) and the muon neutrino |v,) are neutrino states
produced and detected in experiments, but recent experiments suggest that
they are not eigenstates of the total Hamiltonian. Rather, if the state is
known to have momentum p, it is some linear combination of the energy
eigenstates |v;) and |vs) of the form

lve) = cosBlvy) +sinblvy)
V) —sin 8|1n) + cos 8|vy)

where

Hiny) = /iP0 + mich Juy)
Hlv) = /023 + m3ch [uy)

for two possibly different masses m; and m,, and some angle 6.

Neutrinos produced by nuclear reactions in the sun are definitely of the
type |ve). For each electron neutrino produced in the sun, what is the prob-
ability of detecting it as a v, after it has traveled a distance L to the earth? -
Assume that m;c < p and mgec < p, so that the neutrinos are moving at
almost, or even exactly, the speed of light, so you can ignore corrections of
the order 1 — v/c compared to terms of order 1. State your result in terms
of p and L, and to first order in the difference Am? = m? — mZ.

The Sudbury Neutrino Observatory published a paper last June that
claimed to observe y-neutrinos from the sun, in sufficient numbers to
explain the thirty year old solar neutrino deficit puzzie. The exper-
iment also put new limits on the mass difference between neutrino
eigenstates.



4. Quantum Mechanics.

A particle moves in a potential which looks like.the harmonic oscillator
for positive z, but is infinite for negative z, so that the wave function must
vanish for z < 0:

mw3z?

V(z) = 5

(z>0) and V()=00 (z<L0)

(a) Estimate the energy using the variational method with a trial function
of the form

Y(z) = Nze ™™ (x>0 and Yx)=0 (z<0)

(b) What is the exact energy of the ground state of this system?

Hint: You may need the integral

o o]
/ e "dr = nl
0



5. Quantum Mechanics.

For any spherically symmetric potential V(r), the radial wave function is
a solution to the integral equation

Ri(r) = si(kr) = 2msk [~ s(kr ks )V () Ru(s")r

where j;(p) are the spherical Bessel functions, n;(p) are the spherical Neu-
mann functions, k is the radial wavevector, m is the momentum, h;(p) =
4i(p) + inu(p), and the notation means

Gilkr ) h(krs) = Gi(kr)hy(krYO(r' — 1) + Gi(kr"Yru(kr)O(r — 1)

where O(z) is the step function.

(a) Write the formula for the partial-wave scattering amplitude, defined as

€' sin &
k

for a particle scattering off the potential V'(r), in terms of the radial

wave function, the spherical Bessel functions, etc. §; are the phase
shifts.

filk) =

(b) Suppose V(r) is an attractive delta-shell potential
V(r) = -V,ad(r — a)

with V, > 0. Find a closed expression for fi(k) algebraically for any l.

(c) What is the cross section at zero incident momentum (i.e. at “thresh-
old”)?



6. Statistical Mechanics and Thermodynamics

Suppose that the energy-versus-momentum relation for a collection of
noninteracting, conserved Bosons were

E(@p) = Alp*

(a) Find the lowest (integer) spatial dimension d;. for which this system of
Bosons will undergo Bose-Einstein condensation.

(b) Making use of the identity

[ #mato = 7 /2 / PP dp

Determine the temperature at which Bose-Einstein condensation takes
place for this set of Bosons in dimensions d > d;,. Assume that their
spin is equal to zero.



7. Statistical Mechanics and Thermodynamics
Consider a set of particles obeying Boltzmann statistics in which the total
energy of a single particle is given by

P2

= "2_ + Eintema.l
m

where 7 is the particle’s momentum in three dimensions, m is its mass and
Einterna1 18 the particle’s “internal” energy. Here,

Eintma.l = 0, €, 2¢, 3e, ...
where ¢ is a constant energy. The particles do not interact with each other.

(a) Write down an expression for the partition function of this system.
From this expression obtain an expression for the system’s Helmboltz
free energy.

(b) What is the heat capacity at constant pressure of this system as a
function of temperature? What is the limit of this expression at tem-
peratures T >> €/kpg?



WRITTEN COMPREHENSIVE EXAMINATION FOR THE MASTER’S
DEGREE AND QUALIFYING EXAMINATION FOR THE PH.D. DEGREE
DEPARTMENT OF PHYSICS

Wednesday, September 19, and Thursday, September 20, 2001
PART II - THURSDAY, SEPTEMBER 20

Important — please read carefully.
The exam (8 hours) is in two parts:
Part 1 Quantum Mechanics, Thermodynamics, Statistical Mechanics
September 19 7 Problems — DO ALL PROBLEMS.
9:00-1:00 This part will be collected at the end of four hours.
Each problem counts for 20 points; the total is 140.
PART 2 Electromagnetic Theory, Thermodynamics, Statistical Mechanics
September 20 7 Problems — DO ALL PROBLEMS.
9:00-1:00 This part will be collected at the end of four hours.
Each problem counts for 20 points; the total is 140.
Instructions
2) This is a closed book exam and calculators are not be used.
2) Work each problem on a separate sheet of paper. Use one side only.

6) Print your name and problem number on EACH AND EVERY page. (Note:
Pages without names may not be counted.)

7) Return the problem page as the first page of your answers.

8) If a part of any question seems ambiguous to you, state clearly what your interpretations and
answer the question accordingly.



8. FElectricity and Magnetism
Consider an infinitely long, thin rod of charge density A which lies along
the y axis. '

(a) What is the electric field due to the rod.

(b) Now suppose that the rod moves in the y-direction with velocity v.
What are the electric and magnetic fields due to the rod? Do not
assume that v is small compared to the speed of light c. ’



9. Electricity and Magnetism

Design an experiment to measure the energy dénsity of electromagnetic
radiation in the “FM radio” band (88-108 MHz). You may use some or all of
the following (but are not limited to): antenna, oscilloscope, amplifier, filter,
transmitter. Be specific about how you would turn the measured quantities
into the final number. Exact numerical calculations for all the steps are not
necessary, but give values valid to within an order-of-magnitude. What value
would you expect to measure in Los Angeles?



10. FElectricity and Magnetism

Two non-relativistic particles of mass m; and mass mo and charges q;
and gy, respectively collide and scatter in their center of mass frame from an
initial velocity 7 to a final velocity 7. ‘

(a) The electric dipole radiation vanishes if g1 /m; = g;/m,. Give a simple
physical explanation of why this is so.

(b) For general masses and charges, compute the energy spectrum (pér unit
frequency per unit solid angle) d? E/dQdw in the dipole approximation,
ignoring the back-reaction of the radiation.

10



11. FElectricity and Magnetism

An infinite column of a non-viscous conducting fluid carries a constant
current density J and is confined to a radius R by the magnetic field that it
induces. (Ignore gravity and electrostatic charge build-up.)

R

]
\

J——>

(a) What is the electro-magnetic force density experienced by the fluid?

(b) In a steady state situation what is the required pressure profile of the
fluid as a function of the radial distance r? That is, explicitly compute

| p(r).

11



12. FElectricity and Magnetism

In the ac circuit shown below,ﬁ the input voltage Vi, and the circuit ele-
ments R, L,C are known quantities.

R
— VWV ]
o
7 = ¢
v, L T
:
—OOOeC—
L

(a) Find the frequency w = wr,, at which the input impedance Z;, =
Vin/ILin is real.

(b) At this frequency, wyes, What is the time-averaged power dissipated in
the circuit, Pdiasip?

(c) At w = wyes, What is the stored energy, Usiorea?

(d) Find the quality factor Q = wresUstored/ Paissip?

12



13. Statistical Mechanics and Thermodynamics

An ideal gas, enclosed in an insulated (upright) cylinder with a piston at
the top, is at equilibrium with conditions p,, V4, T;. A weight is placed on
the piston. After some oscillations, the motion subsides (note that this is not
a reversible process) and the gas reaches a new equilibrium at conditions p.,
‘/27 T2-

(a) Find the temperature ratio T} /T; in trms of the pressure ratio A =
p2/p1.

(b) Find the entropy change.

() f A =1+¢ with € € 1, show that the entropy change is of second
order in e.

13



14. Statistical Mechanics and Thermodynamics

Suppose n(R) is the concentration of air molecules at the surface of the
Earth, R is the radius of the Earth, M is the mass of the molecules (assume
that the atmosphere is made up of a single species of molecule), and g is the
acceleration due to the gravitational attraction of the Earth at its surface.
Making the simplifying assumption of a constant temperature throughout the
whole atmosphere, show that the total number of molecules in the atmosphere

is
_ MgR [oO MgR?
N =4mne ‘B’/ drr? e*sTr
R

with r measured from the center of the Earth.

14
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Problem 66. Scattering by a Delta-Shell Potential
Part a) Set A = 2mV,a? as in Problem 62. Then U(r) = —AJ(r — a)/a. The radial wave

function satisfies

Ri(r) = julkr) — ik / ik <Yk U () Ry )’

i " kA [
= Ji(kr) + % / Gk )by (k) (r' — a) Ry (') dr’ + % / Gikr)hy (k)3 (r' — a) Ry(r')r"dr’

= ji(kr) +ikAaR(a)ji(ka)h(kr)O(r — a) + ji(kr) + ikAaR;(a)j;(kr)hi(ka)©(a — 1)

(S17.16)
or
Ri(a) = ji(ka) + ikAaR;(a)j,(ka)h (ka) (S17.17)
The solution is (k)
Ji\ka
R = S17.18
@) = T g (ha) o () ( )
and the partial wave amplitudes are
€' sin § . 5 ) Aaj(ka)?
T - _/0 jl(kT)U(T)Rl(T)T dr = )‘ajl(ka)Rl(a) - 1— ’Lk'a)\jl(k'a)hl(k'a)
(517.19)
Part b) In particular, for [ =0,
€™ sin §; a\
— S17.20
k 1-A ( )
and the threshold cross section is
dma’\?
—_ — 17.21
o EEE (S17.21)

Part ¢) If the force is repulsive, V, < 0 and therefore A\ < 0. The scattering length is
between 0 and a, so the threshold cross section is between 0 and 4wa?.
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Calculation of conditions for BEC in an arbitrary number spatial dimensions

"The conditions for the Bose-Einstein Condensate
(BEC) to occur depend on the number of spatial dimen-
sions under consideration, and the relationship of the en-
ergy to the momentum. Consider a general expression in
which the energy ¢ is proportional to the momentum p,
raiged to some power q

€= Apf _ (1)

This relation can be realized by comparison with a typical
massive, non-interacting, non-relativistic boson for which
€ = sLp? or for a massless boson, € = cp. In general,
the evaluation of the condition for the BEC is done by
calculation of the total number of particles through the
relation

N= f A(e)dN = f

where D(¢) is the density of states, and A=(k, T} . For
a particle in a box of side length L, the contained modes
are quantized by the condition that the wave function
vanish at the walls, ¥(x,y,z=0)=¥(x,y,2=L)=0. Thus
for each spatial dimension i, we have the condition
T
L= 3

=1 (3)
From the deBroglie momentum relation we have p;=Fk;,
8o in terms of n; we get p;=A%L. Inserting this into
eq{l) we get

D)
P = e L )

L
A A4 e'/a (4)

The density of states is evaluated by solving for the dif-
ferent pieces (I and II) of the derivative expansion

€= A(hf%i)q = n =

dN dNdn dn
D()“—d‘e*“-ﬁa:zsfi()? (5)
{f) (I7)

where (I) is the surface area of a d-dimentional sphere in
n-space (n is the radius). This is given generally by

21rd/2nd_1 B 2;-1-‘1/2 L )d—l 4ot 6
[d/2) ~ 1(d/2) ‘mrAte’ € ®)

where we have inserted the expression for n from above.
In lien of memorizing this expression, it is sufficient to
realize that the surface area term goes like n%~'. From
evaluation of term (II) using eq{4), we see that this term
is independent, of d. This is true for all such problems
like this. Now solving completely for D(e),

d/2 -1 4_1 i-g
o - {m(m—o HGram) 7}

Sa(n) =

ajx
_ = 1-(3_) ((d—a)/a
T(@/2) g \kn/ A¥:E

()

Note that we have an L? term that gives us our volume
element. Inserting D(¢) into eq(2) we have to remember
to include a factor of 1/2% since we are considering only
positive values of n,

/2 L 1 o c(d-a)/q
N= 24- lr(d/z)q('ﬁﬂ“) Ad/{_[o eﬂ("‘#‘)—-ldﬁ ®

C

Now for a couple tricks. Expand the denominator of the
sintegrand in a power series of the form 1_1_: =¥ ext
valid when |2] < 1.

% (d—a)/q

s eBlm %
i
=C fn 2Pl 1 — g Ble—p)

e f e Plem) (3 = 10e) ) (@0 age
(, (3oee)
30/ Ze*—lﬁ(f—r-t) d—a/ag,
L (o)
oG oo
=CZ (/ e—lﬁ(c—n)f(d—c)/qde)
=1 \“0
i oG
-C emp( f e~mef(d~q)/qd6)
=1 0

The expansion has assumed that e (<4} <1 and thus
€ > p. The validity of this condition will become appar-
ent shortly. We can now recognize the integral as of the

form
O
—az.n_ B
e Mg =
5 gntl

Therefore we have

N= Cz ‘ﬁ”( or )')

= )T+

N=C

ld-a/age

(9)

(10)

cFlé/a) 2) o
5d/q Z ;a/q

Lasq (e"’ )

d—
{rae ==}

(11)
The sum term in the underbrace is the Polylogarithmic
function Lg/q(e®*) also called a weighted Zeta function.
For the BEC to occur Ld/g(eﬁ‘“) must approach it’s max-
imum, finite value. This is given by u = 0, validating
our expansion condition € > p=0 in that the energy of
a single particle cannot be equal to zero. The sum then



13

o |

FIG. 1: The Riemann zeta function blows up at d/q ~ 1 and
is negative for d/q < 1.

becomes the standard Riemann Zeta function {(x). The
total number of particles is therefore

r
N =c g (12)

A plot of ((d/q) is shown in FIG(1). When d/q < 1, the
zeta function gives non-physical results in the form of
infinite values or negative total particle numbers. There-
fore the only physically tenable solutions for the BEC are
obtained when the following relation is satisfied:

d>q (13)

The expression for the BEC phase transition tempera-
ture can finally be obtained by rearranging eq(12).

1 N

q/d
%~ i (eramas) (14)

In summary, the relationship between the momentum ex-
ponent g and the dimensionality d of the space deter-
mines whether the BEC will occur for the particle-in-a-
box model. Evaluation of the integral yields the Riemann
seta function for the BEC condition p=0, which gives
physical solutions only if d > ¢.
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