
UCLA Physics Winter 2022 Comprehensive Exam

5. (Quantum Mechanics)

Starting with the time-independent Schrödinger equation, work out the fraction of incident particles
transmitted through a rectangular one-dimensional potential barrier in the case shown below, where the
energy E of the incident particles is equal to the barrier height V . Let the particles have mass m and
let the barrier width be a.
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Solution: Solution by Jonah Hyman (jthyman@g.ucla.edu)

The time-independent Schrödinger equation for a particle moving in one dimension is

Hψ(x) = Eψ(x) (2)

where H is the Hamiltonian, E is the energy of the particle, and ψ(x) is the wave function of the
particle.

For a nonrelativistic particle, the Hamiltonian is given by

H =
p2

2m
+ V (x) (3)

where p2/(2m) is the nonrelativistic kinetic energy and V (x) is the potential. In this problem, the
only feature of the potential is the constant-height barrier. In order to solve the problem in the
simplest possible coordinate system, set x = 0 to be the left side of the barrier. In this coordinate
system, the potential is given by

V (x) =

{
V for 0 ≤ x ≤ a

0 otherwise
(4)

The definition of the quantum mechanical momentum operator in one dimension is

p =
ℏ
i

d

dx
(5)

Putting all this together, we get the Hamiltonian in all regions

H =

{
− ℏ2

2m
d2

dx2 + V for 0 ≤ x ≤ a

− ℏ2

2m
d2

dx2 otherwise
(6)

To find the fraction of incident particles transmitted, we need to find the wave function everywhere.
There are three regions in this problem:

• The left region, given by x < 0

• The center region, given by 0 ≤ x ≤ a (the barrier)

• The right region, given by a < x

In this case, we are given that the energy E is equal to V . Therefore, the time-independent
Schrödinger equation (2) becomes

− ℏ2

2m

d2ψ

dx2
= V ψ for x < 0 (7)

− ℏ2

2m

d2ψ

dx2
+ V ψ = V ψ for 0 ≤ x ≤ a (8)

− ℏ2

2m

d2ψ

dx2
= V ψ for a < x (9)

Each of these equations needs to be solved separately. Fortunately, (7) and (9) are the same equation:

− ℏ2

2m

d2ψ

dx2
= V ψ
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Rearranging, we get

d2ψ

dx2
= −2mV

ℏ2
ψ

d2ψ

dx2
= −k2ψ for k2 ≡ 2mV

ℏ2
> 0 (10)

This is equivalent to the ordinary differential equation for simple harmonic motion d2ψ
dx2 + k2ψ = 0.

The general solution to this differential equation is a sum of sines and cosines, or equivalently, a sum
of complex exponentials. In this case, the complex exponentials will be easier to work with. With
that in mind, let’s write

ψ(x) = (constant) eikx + (constant) e−ikx (11)

There are two constants, which corresponds to the fact that this is a second-order differential equa-
tion. Setting different constants for the left and right regions, we can write general solutions for ψL
and ψR:

ψL(x) = Aeikx +B e−ikx and ψR(x) = F eikx +Ge−ikx for k2 ≡ 2mV

ℏ2

Now for the center region, governed by differential equation (8). We can simplify this equation to
get

− ℏ2

2m

d2ψ

dx2
+ V ψ = V ψ

− ℏ2

2m

d2ψ

dx2
= 0

d2ψ

dx2
= 0 (12)

To solve this second-order differential equation, recall that any linear function and any constant

function have vanishing second derivative. Therefore, the solutions to d2ψ
dx2 = 0 are sums of linear

functions and constant functions:
ψ(x) = Cx+D

Combining our solutions for all three regions, we get the following general solution for ψ(x):

ψ(x) =


Aeikx +B e−ikx for x < 0

Cx+D for 0 < x < a

F eikx +Ge−ikx for a < x

Now it’s time to apply the boundary conditions for this setup. The wave function is always required
to be continuous. Its derivative is also always required to be continuous (unless there is a delta
function in the potential, which there isn’t here). This means that we require

ψ(x→ 0−) = ψ(x→ 0+) and ψ(x→ a−) = ψ(x→ a+) (continuity)

dψ

dx

∣∣∣∣
x→0−

=
dψ

dx

∣∣∣∣
x→0+

and
dψ

dx

∣∣∣∣
x→a−

=
dψ

dx

∣∣∣∣
x→a+

(continuity of derivative)

Finally, we need to have a boundary condition at infinity. This condition comes from the fact that
we want particles to be incident from only one side. In this case, we will set that to be the left side.

Note that a wave function of the form eikx represents a free particle moving to the right, while
a wave function of the form e−ikx represents a free particle moving to the left. This is because the
time-evolution of a wave function ψ(x) with energy E is given by

ψ(x, t) = ψ(x)e−iωt for ω ≡ E

ℏ
(13)
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Therefore, a wave function of the form eikx time evolves as

ψ(t, x) = ei(kx−ωt) (14)

which is the expression for a plane wave moving to the right. Similarly, we can show that a wave
function of the form e−ikx represents a plane wave moving to the left.

Since we only want particles to be incident from the left side of the barrier, we expect all par-
ticles on the right side of the barrier to be moving outward, i.e., to the right. (On the left side of
the barrier, we expect particles to be moving both ways, since some of the particles reflect off the
barrier.)

This means that we must have
ψ(x→ ∞) ∝ eikx

Collecting the general form of the solution and the boundary conditions, we have

ψ(x) =


Aeikx +B e−ikx for x < 0

Cx+D for 0 < x < a

F eikx +Ge−ikx for a < x

(15)

ψ(x→ 0−) = ψ(x→ 0+) and ψ(x→ a−) = ψ(x→ a+) (continuity) (16)

dψ

dx

∣∣∣∣
x→0−

=
dψ

dx

∣∣∣∣
x→0+

and
dψ

dx

∣∣∣∣
x→a−

=
dψ

dx

∣∣∣∣
x→a+

(continuity of derivative) (17)

ψ(x→ ∞) ∝ eikx (direction of incident wave) (18)

Boundary condition (18), the fact that the incident wave comes from the left, gives us

G = 0 (19)

Boundary condition (16), the continuity of the wave function at x = 0 and x = a, gives us (applying
G = 0 where applicable)

A+B = D (at x = 0) (20)

Ca+D = Feika (at x = a) (21)
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Boundary condition (17), the continuity of the derivative of wave function at x = 0 and x = a, gives
us

ikA eikx − ikBe−ikx
∣∣
x=0

= C (22)

ik(A−B) = C (at x = 0) (23)

and (applying G = 0 where applicable)

C = ikFeikx
∣∣
x=a

C = ikFeika (at x = d) (24)

To find the fraction of particles transmitted, we need to find F (which represents the strength of
the transmitted plane wave) in terms of A (which represents the strength of the incident plane wave).

To start, we can eliminate C. Plugging (24) into (23) yields

ik(A−B) = ikFeika

A−B = Feika (25)

and plugging (24) into (21) yields

ikaFeika +D = Feika

D = Feika(1− ika) (26)

This allows us to eliminate the only other occurrence of D, in (20):

A+B = Feika(1− ika) (27)

(25) and (27) are two equations for the unknowns B and F in terms of A. We can now add the two
equations to one another to solve for F :

A − B = Feika

A + B = Feika(1− ika)
2A = Feika(2− ika)

This gives us

F =
2

2− ika
e−ikaA (28)

All that remains is to extract the fraction of incident particles transmitted (i.e. the transmission
coefficient) from this information. The number of particles of a certain type (e.g. the number of
incident particles, or the number of transmitted particles) is proportional to the probability of find-
ing a particle of that type, which is equal to the absolute value squared of the wave function for
particles of that type.

The wave function for incident particles (those to the left of the barrier, moving rightward toward
the barrier) is

ψincident(x) = Aeikx (29)

and the wave function for transmitted particles (those to the right of the barrier, moving rightward
from the barrier) is

ψtransmitted(x) = Feikx (30)

(We don’t include the Be−ikx term since that describes reflected particles, those to the left of the
barrier, moving leftward away from the barrier.)
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Therefore, the number of incident particles is proportional to

|ψincident(x)|2 = |A|2 (31)

and the number of transmitted particles is proportional to

|ψtransmitted(x)|2 = |F |2 (32)

Since the left and right sides of the barrier have the same potential, the fraction of transmitted
particles is therefore

T =
|ψtransmitted(x)|2

|ψincident(x)|2

=
|F |2

|A|2

T =

∣∣∣∣ 2

2− ika
e−ika

∣∣∣∣2 by our result for F in terms of A (28) (33)

Taking the absolute value, we get

T =
4

|2− ika|2

=
4

4 + (ka)2

T =
1

1 + (ka/2)2
(34)

Recall that k is defined by k2 ≡ 2mV
ℏ2 (see (10)), so(

ka

2

)2

=
k2a2

4

=
2mV
ℏ2 a2

4

=
mV a2

2ℏ2

Plugging this into (34), we get the fraction of particles transmitted as

T =
1

1 + mV a2

2ℏ2

(35)
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