1. Classical Mechanics

A planet of mass m is moving in a gravitational central potential around a Sun of mass M.
Assume M >> m.

a)
b)
c)
d)

e)

Write down the Lagrangian and the Euler-Lagrange equations for the polar variables r, 8
in the plane of motion.

Use the substitution u = % to write down a differential equation for the trajectory u(6).

What is the equilibrium solution of this equation? What does it represent?

If the planet is not initially on the equilibrium orbit, there will be small oscillations
around the equilibrium point. What is the period of these oscillations?

Assume there is a perturbing potential ¥’ = -B/”, calculate the effect of this perturbation
on the orbit.
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Question 2: Classical Mechanics

Consider the classical field theory in one space dimension, parametrized by the coordinate
x, with a single real scalar field ¢(t, z), governed by the following action,

Slo] = s [ dvde (5007 - S(0.67 — 21 - cos)

Here, w and c are a real constants, respectively with dimensions of frequency and velocity.
The overall constant Sy has dimensions of angular momentum divided by velocity.

(a) Use the variational principle to obtain the Euler-Lagrange equation for ¢(¢,x), and
give the expression for the total energy E of a general field configuration.

(b) Consider solutions to the Euler-Lagrange equation of (a) of the form,

o(t,x) = f(y) y =(v)(x —ot)

for arbitrary constant velocity v. Show that it is possible to choose y(v) such that f (as a
function) is governed by an equation which independent of v; determine this v(v), and the
corresponding solution(s) f such that cos (f(+o0)) =1, and f(400) # f(—00).

(c) Derive the relation between the total energy E of the solution and its velocity v, and
show that this relation is the relativistic one. Derive the mass of the soliton.

Solution to Question 2

(a) Under an infinitesimal variation d¢ of ¢, the variation of the action is given by,
65[¢) = Sy / dt d:c( — 02+ 202 — w?sin ¢) 5o
where we have freely integrated by parts on d¢. Thus the Euler-Lagrange equation is,
02 — *02¢ + w?sing =0
The momentum canonically conjugate to ¢ is 9,¢, so that the total energy is given as follows,
1 s 2 2
E = SO dx 5(&%?) + 5(8m¢) +w (1 — COS ¢)
(b) For a field configuration of the form ¢(t,z) = f(y(z — vt)), we have
G = 7t
02 ¢ — 72 f//
where the prime denotes the derivative with respect to the argument of f. The Euler-
Lagrange equation on these configurations reduces to,

—( = v?)f" +w?sinf =0 (0.1)



The equation becomes independent of v when we choose the v-dependence to be,

= (1 — Z—z) - (0.2)

The dependence on ¢ is not uniquely determined by (0.1), but was chosen here so that - is
dimensionless. Choosing a different c-dependence of v amounts to redefining f. With the
choice made in (0.2) for 7, the variable y becomes the spatial coordinate in the rest frame
of the solution, under a relativistic change of frame by a Lorentz transformation. With the
above choice of v in (0.2) equation (0.1) becomes,

—f" +w?sinf =0 (0.3)

which is indeed independent of v. To integrate the equation, we multiply it by f’ and
integrate, which gives the following first integral of motion,

5P W1~ cosd) = 4 (04

for an integration constant u. (You can think of —u? as total energy of a mechanical system
where ¢f’ stands for time derivation.) Using now the boundary conditions as y — +o00, we
conclude that p = 0. Taking the square root of the equation gives the equations,

' w. f
5= :I:Z sin (0.5)

Integrating this trigonometric solution, we find,
tang = el f(y) = 4arctan(e¥/)

(c) Using equation (0.5) with u = 0, we find the following simplified formula for the energy,

—+00 +oo

+00
=S, /_ dz A(9,6)% = Sy / daf'(1(z — v1))?2 = Sore? / dyf'(y)?

o0 —00 — 00

By construction, the last integral is independent of the velocity v, so that the relativistic
rest mass M of the solution is given by,

+oo 2 J(+00)
M= S, / dyf/(y)? = £ 2220 / dfsin 4 = 05
_ & f(=oc0) 2 C

oo

so that we have the relativistic kinetic formula, £ = vM¢c?. The second equality above was
obtained by using equation (0.5) for one factor of f’. Note that we only make use of the
boundary conditions to evaluate the mass, and do not need the full analytical solution for f.



(9/7‘/] Problem3

A heavy quark (charm orl bottom) meson can be treated as a quark and anti-quark bound state with non-relativistic
quantum mechanics in a/confining potential, where the potential is often assumed the form of U=A/r+Br with A<0
and B>0, and the confinement is mostly provided by the Br term. Considering the Schrodinger equation for the

|
potential V(x)=g|x|, take W~e~a 35 a trial wavefunction and use the variational metho}@imate the ground

tat it rticle of in the confini tential. . i
state energy for a pa |c‘eo mass m in the confining potentia mewﬁvﬁ Ha 0)@6@1’“)
v Value. ¢ 2 W

- AZ
Y=C¢€ -




Problem4

Consider the scattering of a particle of mass m from two identical potential centers that
are some distance @ apart. i.e. consider the potential

U(r) = Up(|7) + Uo (|7 — al) (0.12)
Where Uy(r) is a (rotationally symmetric) potential for scattering from one center. For this

problem work in the (first) Born approximation.

a) Express the scattering amplitude f(q) for the scattering from two centers in terms of the
scattering amplitude from one center alone.

b) The potential (0.12) can be used as an approximation of the scattering of electrons of a
diatomic molecule. Find an expression for the differential cross section for the scattering of
a diatomic molecule in terms of the differential cross section of the mono-atomic gas.

Hint: To do this you have to average over all possible directions of the separation vector a
since all orientations of the diatomic molecule occur with the same probability.

c) Find the relation of the total cross section for the diatomic molecule and the monoatomic
gas in the limit of low energy scattering.

Solution

a) The scattering amplitude in the first Born approximation is given by the following integral

1@ =~ [ (V) + Uo7 — a))e7*
- —2;’;2 / dBaU(|7])e 77 (1 + ¢77) (0.13)
= fola) (14779 (0.14)

Note that since Uj is rotationally symmetric the single center scattering amplitude only
depends on the magnitude of ¢ = |g].

b) The differential cross section is given by square of the scattering amplitude

do

a9 = ’f(Q>|2

= 2(L+cosq- @) folg)” (0.15)

For the scattering of electrons from a diatomic molecule we can approximate by the (screened)
potential of the two cores. Since the orientation of the separation of the cores is random in

4



a gas we to get the differential cross section one has to average over all directions @ since f
only depends on ¢ the fZ term is not affected and one uses

I 1
cos(q-d) = yym /cos(cf- a)ds

sin|qllal

dllal

Hence the differential cross sections of the diatomic and monoatomic gas are related as
follows

(0.16)

do sin |q]|@]\ dog
— =2(14+ —=— ) == 0.17
d§2 ( |q1]a] ) ds) (0.17)
c¢) For low energy scattering one has that |g]|d| << 1 and hence
im M =1 (0.18)
lal—o |qT|a]
And hence p d
g o)
— ~ 44— 0.19
<) ds) (0.19)
After angular integration this implies
Otot — 40’07,5025 (020)

The total cross section for the diatomic gas is four times the cross section for the monoatomic
gas in the low energy approximation.



Problem5

Consider the Hamiltonian for a rigid rotator

2 LI

H=-r4y =2, =3
o1, Tar, T o,

(0.21)

Here L; are the angular momentum operators and [;,7 = 1,2, 3 are constants denoting the
moments of inertia around the three axis.

a) For the case of the symmetric top, I = I; = I and I3 # [; and one has

Ly L3 I3
I R R | 0.22
=57 Tor T o, (0-22)
derive the energy levels and their degeneracies.
b) For a slightly asymmetric top the Hamiltonian can be approximated by
A (L3 L2
H=Hy+=> (2~ 2
o7 (2] 21) (0.23)

where A << I and A << I3. Calculate the corrections to the energy for the states with
[ =1 to first order in A.

Note: Please calculate all matrix elements you need from the basic properties of angular
momentum.

Solution

a) We can rewrite the Hamiltonian Hy in terms of L? and L2 as follows

1 1 1
Hoy= —(Li+ L3+ L)+ (= — =) L3 0.24
0 2]( 1+ 2+ 3)_'—(2]3 2]) 3 < )
For eigenstates | [, m) of L2 and L3 one finds
Ho | 1,m) h20+1y+1_hh22 | 1,m) (0.25)
m) = _ m m .
o 21 2I,1 ’

For generic values of I, I3 the states with m # 0 are two-fold degenerate as | [,m) and
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| I, —m) have the same energy eigenvalue. The state with m = 0 is non degenerate.

b) It is useful to express the perturbation in terms of raising and lowering operators using
the following identities

Li — (Ll +iL2>2 = L% —+ i(LlLQ + L2L1> - Lg

L2 = (Li+ily)’ = Li —i(LiLy + Ly L) — L (0.26)

And hence ALz L2 A
Hi==|72-5] =L+ 17 2
T (2[ 2[) IVER ) (0.27)

e Since the state | [ = 1, m = 0) is non degenerate we can apply non degenerate perturbation
theory.

A
i
Which vanishes since L2 | I = 1,m = 0) = 0, hence the first order correction is zero.

EL o= l=1,m=0]|(L>+L*)|l=1m=0) (0.28)

e Since the states | [ = 1, m = £1) are degenerate we have to apply degenerate perturbation
theory. We have to evaluate the matrix element

<<m:1|H1u:1,m:1> (m=1]H |m=—1) )_< 0 —3?5>
(m=—-1[H|l=1m=1) (m=-1|H|l=1m=-1) ) | -4

(0.29)
Where we have used the fact that

(l=1m=-1|L>|l=1m=+1)=2r", (I=1m=1|L2|l=1,m=—1)=2h%
(0.30)
The first order correction to the energies are the given by the eigenvalues of the above matrix
and hence
AR?

el (0.31)

1
El(z)l,m:il =



Problem6

A particle with spin s and magnetic moment g = s (where 7 is the gyromagnetic ratio)
is subjected to magnetic field B, so that its Hamiltonian is given by

H=—-u-B.
Cartesian spin projections s; obey the usual commutation relations:
[si, 8] = ihe'T* sy,
ijk

where €7* is the antisymmetric Levi-Civita tensor, and we implied summation over the re-
peated index k.

If the spin is measured to point along the y direction at ¢t = 0, such that (s) = sy (where
s is the magnitude of the spin and y is the unit vector pointing along ), find its expectation
value along the z axis, i.e., (s;), for ¢ > 0. Let us orient the frame of reference such that
B = Bz (where B is the magnitude of the magnetic field and z is the unit vector pointing
along z).

Solution: Using the equation of motion in the Heisenberg picture,

ds 1 dSZ‘ 1
S—lHs = Z'=1yBssd,
o = 78l o = 7 Blsi; sl
we see that
ds, ds,
T = WSy and o T W
where w = vB. Defining s, = s, + is,, we have
d8+ .
— = —ws
dt +

which is solved by (s, ) = ise™™! for the expectation value, according to the stated initial
condition. We finally find
(sz) = Re(s;) = ssin(wt).



Problem?7

Consider a zero-spin, nonrelativistic particle of charge q and mass m constrained to
move in 2-dimensions (x, y) with a uniform magnetic field of strength B pointing
along the z-direction perpendicular to the (%, y) plane.

a)
b)
c)
d)

e)

Find the Hamiltonian for this system. Use a convenient gauge (Landau gauge)
that simplifies the consideration of periodic boundary conditions along the x-
direction and an unbounded domain along y.

What are the conserved quantities of the system?

Use your knowledge of the one-dimensional quantum harmonic oscillator to
deduce the quantized energy levels for the magnetized particle.

Find what is the characteristic scale-length of the wave function along the y-
direction.

Where is the center of the wave function, along the y-direction? What is the
classical meaning of this center position?
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Question 8: Statistical Mechanics

Consider equilibrium between a solid and a vapor made up of the same monoatomic
molecules. It is assumed that an energy ¢ is required per atom for transforming the solid
into vapor atoms. For simplicity, use the Einstein model for the vibrations of atoms, i.e.
assume that each atom is represented by a three-dimensional harmonic oscillator performing
vibrations with angular frequency w about its equilibrium position, independently of the
other atoms. Evaluate the vapor pressure at equilibrium at temperature 7.

Solution to Question 8

We denote by Ny and N, respectively the number of atoms in the solid and in the
gas. We use the canonical ensemble where the independent variables are TV, N. The
partition function Z,(T, N,) for the gas is that of an ideal gas in volume V with N, atoms
at temperature 7', namely,

3
Ve (kT 2"
Z,(T,V,N,) = —
g( 7v7 9) Ng' <7Th2)

The partition function Z,(7T, N,) for the solid is that of N, three-dimensional harmonic

oscillators of frequency w and binding energy —¢, and is give by,
ZJ(T,Ns) = Zy(T)™
—hw/2kT N\ 3 Ao \ 73
_ /kT € __o/kT .
Z(T) = e?/" x (1 — e_m/kT> =¥ (2 sinh 2kT>

Note that the Einstein model treats the oscillators as distinguishable, as the underlying
atoms are. The total partition function is given by Z = Z,7Z,. Equilibrium is attained by
minimizing the total free energy —kT'In Z as a function of N, (or equivalently maximizing
Z) while keeping N, + N, fixed. In the limit of large N,, we use Sterling’s formula, and find

0lnZ, 3 mkT
N, = an—lnNg+§ln(7Th2)
0ln Z, © ., hw

= ——— In [ 2sinh —
aN, kT+3n($n2MJ

6ang + 81HZS _
N, N,

3 3
mkT 2 hw \* mw? 2
N, V ( 73 ) e (2 sinh —QkT) V (—wkT) e

3 3 3
T 2 2\ 2
p = kT <ml;:12 ) e~ #/FT <2 sinh —52%) ~ kT <m]:uT) e~ #/FT
T m

where we have used the ideal gas law pV' = N,kT" for the gas pressure p. The approximation
listed on the right side corresponds to the classical value, in the limit where hw < kT

Hence the equilibrium equation 0 gives,




Problem9

Consider an ensemble of diatomic molecules, such that each atom has three internal en-
ergy states € = 1,0, —1 (in some units), independently of the other atom. The total energy
of the molecule is U = ¢ + €. Calculate the ensemble averages (U) and (U?) at a given
temperature T'.

Solution: For a single atom, we have

(€) = — and (%) =

e P4 ef
Z )
where Z = 1+ €? + ¢7# is the partition function (87! = kgT). For the full molecule,
(U) = (&) +{e2) = 2{e) = 27—

and
({U%) = ((e1 + €2)?) = (&) + (&3) + 2{e1)(e2) = 2({¢*) + (€)?)

e‘ﬁ+eﬁ+ e B — P\’ 2
Z Z

=2 —le?+e’ +2(e7 + 7)) .




Problem10

1. Consider a two-dimensional gas of particles of mass m sliding (without
rolling) on a table as shown in the figure above. There is a constant gravitational
field —gZ directed normal to the surface of the table as shown in the figure. The
table is flat expect for a step of height h that runs parallel to the y-axis. There
is an impenetrable wall along the top of the step except for a small slot of width
a through which the particles may pass. In thermal equilibrium at temperature
T and when the slot in the ramp is open so that particles can be exchanges
between the two levels, the area density (number of particles) on the lower and
upper parts of the table are n; and ny respectively. In the following you may
assume that the particles are much small than the slot’s width a and each may
be treated as an ideal gas.

a) (5 points) Calculate the equilibrium value of the ratio of 72|eq in terms

of the parameters given.

b) (5 points) Now assume that the density of the particles on the right and
left sides are given by 75 and 71 respectively. Calculate the rate Ry_.5 at which
particles pass through the slot from side 1 to side 2 in thermal equilibrium in
terms of these densities and the parameters given above. Calculate the analo-
gous rate from particles going from side 2 to side 1 Ra_.1.

¢) (5 points) From your answer in part b, determine the ratio fia /71 required
to make the net flux of particles through the slot vanish. Compare this to your
answer in part a. Explain in one sentence what this means.
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Problem11

A horizontally polarized plane wave of wavenumber £ is incident normally on a

thin birefringent crystal of thickness d = ﬁ where An is the difference in the

indexes of refraction for the fast and slow axes of the crystal. The fast axis of the
crystal is oriented at an angle 0 with respect to the laser polarization.

a) Assuming perfect transmission, calculate the horizontal and vertical
component of the electric field of the output plane wave as a function of 0.

b) For what 6 angles is the output wave linearly polarized?

c) For what 0 angles is the output wave circularly polarized?

d) What happens if I double the length of the crystal?
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Problem12

Consider a small, cold plasma ball of radius R. It consists of free electrons, of mass m
and density n, which are neutralized by immobile (very heavy) background ions.
The ball is placed between a pair of very large capacitor plates driven by a voltage
generator oscillating at frequency @ . In the absence of the ball the vacuum electric

field within the capacitor points along the z-direction, i.e., EV = E, cos(wt)z, where
E,is a constant. If the value of frequency is chosen equal to the plasma frequency,

ie, o= w,= \/47rezn/m
a) Find the electric field vector within the ball--Ignore resistive effects.

b) Obtain the total time-averaged electric energy stored within the ball.



A.JCM 'Pi(w‘w\: e <) Qy=-Fo




Morodu [Eab #((am.)

vV

N B R ' - ) L\
st Adnrn wet: ORD P (-Er T oAb

~

TR ¢ -eTor®

i
vl
>

D). .

%.

<D

1]}

(g
]

m

L~

;D
-

(¢
v/
>
™
AR
-l




S

X
= 28

A
{

P

|

. o
C

SW
e

FAE_ Y /4~‘4’:'\

¥
|

€

LU\ = 3 (ew) He

3.
NTE £

(.
(ew)

0O = 0.5&

U
—

g

,A_I(rw’ vl 4+

((ZEVN

C — & n.‘
TV A VA

M

Ly TR

S (ew) \ER (47 R>)

M

3]

‘A -

v

o

Maesdoa || EAM ¥ (a0

Volimar

an3\

44

)

IAY

G

3

\
0

)

o\
[2\ RE

cn /2 EN [
AT

hnd
-

v

Jty \ =
Sy =
SAATAN
CVE)
AN

( <\




Problem13

| [ 7l

Two large parallel condu‘ctor plates are separated by a distance d. Electromagnetic waves are propagating along the z
direction parallel to the plates. Assuming the wave is uniform along the x direction, find the possible waveform and

cut-off frequency of the |el‘c_-ctn:nmagnetic waves propagating in the z direction.
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Problem14

14. Electromagnetism

An infinitely long perfectly conducting straight wire of radius 7 carries a constant current i
and charge density zero as seen by a fixed observer A. The current is due to an electron
stream of uniform density moving with relativistic velocity u. A second observer B travels
parallel to the wire with relativistic velocity v. As seen by the observer B:

a) What is the electromagnetic field?

b) What is the charge density in the wire implied by this field?

c) With what velocities do the electron and ion streams move?

d) How do you account for the presence of a charge density seen by B but not by A?



Solution
(a) Let ¥ and X' be the rest frames of the observers A and B re-
spectively, the common z-axis being along the axis of the conducting wire,

which is fixed in £, as shown in Fig. 5.6. In T, p=03)= —,e,, so the
electric and magnetic fields in X are respectively

E=0,
!,‘%’}e 5 (r<#
B(r):{" g ¥ ( 0)

%e‘,, (r > ro)

where e,, e,, and e, form an orthogonal system. Lorentz transformation
gives the electromagnetic field as seen in ¥’ as

E|'|=E||=0, B|'|=B|| =0
~B25 e, (r<ro)

_Mer’ (r>ro)

2%r

E = 1:7(E_L+VXBL)=—7vBe,={

vxE_L) {%"},’4% (r < mo)
=7Be¢=

B' =B, =9 (BJ_ — :
c Bl ey, (r> 1)
where vy = TI_’F’ and the lengths r and ro are not changed by the
—-v

transformation.

ey ,or

= 1
S

4

Fig. 5.6

(b) Let the charge density of the wire in £’ be p’, then the electric field
produced by p’ for r < rg is given by Gauss’ law

2nrE] = p'nr?/eg

to be 2
E' = gere, (r < ro)
Comparing this with the expression for E’ above we have
- 8
bea xrac? ’

where we have used pgeq = 21;—



(c) In X the velocity of the electron stream is ve = —Ue,, while the
ions are stationary, i.e. v; = 0. Using the Lorentz transformation of velocity

we have in ¥’ +U
v
vL:—we,, vl = —ve, . (6)
c

(d) The charge density is zero in ¥. That is, the positive charges of
the positive ions are neutralized by the negative charges of the electrons.
Thus pe + p; = 0, where p, and p; are the charge densities of the electrons
and ions. As

B
=0 arilU
we have .
i
b= iU’

However, the positive ions are at rest in £ and do not give rise to a current.
Hence .

sl L &

Je =)= 7".(2)9:) Ji=V.
(-ci, p) form a four-vector, so the charge densities of the electrons and ions
in £’ are respectively

Lo et Ym0 LT
pe =i (Pe 02 Je) _— WT%U rrgcz )

iy
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pi=pi =

Obviously, p, + p! # 0, but the sum of p, and pi is just the charge density
p' detected by B.



