
UCLA Physics OPEN-BOOK, OPEN-NOTE Fall 2021 Comprehensive Exam

1. (Quantum Mechanics)

Two distinguishable spin-1/2 particles interact via the Hamiltonian H0 = g S1 · S2.

(a) What are the energy eigenstates and eigenvalues? Express the states in terms of eigenstates of S1,z

and S1,z.

We now add a time-dependent perturbation: H = H0 + ϵ exp
(
− t2

2α2

)
S1,z.

(b) Assume the system is an eigenstate of H0 at t = −∞. Compute the probabilities for the system to
be in a given eigenstate of H0 at t = +∞, working to lowest nontrivial order in ϵ. In particular,
you are being asked to consider transitions between all posssible initial and final eigenstates of H0.
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Solution: Solution by Jonah Hyman (jthyman@g.ucla.edu)

Most times a quantum mechanics problem talks about two particles with spin, the problem is about
addition of angular momentum. Here is some key information about addition of angular momentum:

Addition of angular momentum

Suppose we are adding a spin-j1 particle to a spin-j2 particle (this also works for adding orbital
and spin angular momentum of a single particle). Let Ji be the ith angular momentum operator
(where i = 1, 2 throughout), and define J ≡ J1 + J2. We can express the state of the system in
two different bases:

Original basis: |m1⟩ |m2⟩

This basis simultaneously diagonalizes J2
1, J

2
2, J1z, J2z (1)

Possible quantum numbers: mi = −ji,−ji + 1, . . . , ji − 1, ji (2)

J2
i eigenvalues: J2

i |m1⟩ |m2⟩ = ℏ2ji(ji + 1) |m1⟩ |m2⟩ (3)

Ji,z eigenvalues: Ji,z |m1⟩ |m2⟩ = ℏmi |m1⟩ |m2⟩ (4)

Dimension of space: (2j1 + 1)(2j2 + 1) different basis states (5)

Combined basis: |j,m⟩

This basis simultaneously diagonalizes J2
1, J

2
2, J

2, Jz (6)

Possible quantum numbers: j = j1 + j2, j1 + j2 − 1, . . . , |j1 − j2| (7)

m = −j,−j + 1, . . . , j − 1, j (8)

J2
i eigenvalues: J2

i |j,m⟩ = ℏ2ji(ji + 1) |j,m⟩ (9)

J2 eigenvalues: J2 |j,m⟩ = ℏ2j(j + 1) |j,m⟩ (10)

Jz eigenvalues: Jz |j,m⟩ = ℏm |j,m⟩ (11)

Dimension of space:

j1+j2∑
j=|j1−j2|

(2j + 1) = (2j1 + 1)(2j2 + 1) different basis states (12)

Relation between bases: m1 +m2 = m (13)

We also need one weird trick for this problem (and many problems like it), which is so important
that it deserves its own box:

Dot product trick:

For addition of angular momentum problems, dot products in the Hamiltonian must be simpli-
fied as follows:

S1 · S2 =
1

2

(
S2 − S2

1 − S2
2

)
where S ≡ S1 + S2 (14)

(a) Since particles 1 and 2 are spin-1/2 particles, then the spin quantum number si associated with
each particle is equal to 1/2. We need to add these two spin-1/2 particles.
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To start this problem, apply the dot product trick to the given Hamiltonian:

H0 = g S1 · S2

=
g

2

(
S2 − S2

1 − S2
2

)
(15)

This Hamiltonian is now expressed in terms of the operators S2, S2
1, and S2

2. By (6), we know
that the combined basis |j,m⟩ simultaneously diagonalizes these three operators (and also the
operator Sz, which does not appear in the Hamiltonian H0). We will therefore work in the
|j,m⟩ basis and search for the energy eigenstates and values.

Applied to a generic state |j,m⟩, the three operators in the Hamiltonian yield

S2 |j,m⟩ = ℏ2j(j + 1) |j,m⟩ by (10) (16)

S2
1 |j,m⟩ = ℏ2s1(s1 + 1) |j,m⟩ by (9)

=
3

4
ℏ2 |j,m⟩ since s1 = 1/2 for the spin-1/2 particle 1 (17)

S2
2 |j,m⟩ = ℏ2s2(s1 + 1) |j,m⟩ by (9)

=
3

4
ℏ2 |j,m⟩ since s2 = 1/2 for the spin-1/2 particle 2 (18)

Putting these equations together, we get the action of the Hamiltonian on an arbitrary state
|j,m⟩:

H0 |j,m⟩ =
g

2

(
S2 − S2

1 − S2
2

)
|j,m⟩

=
g

2

(
ℏ2j(j + 1)− 3

4
ℏ2 − 3

4
ℏ2
)
|j,m⟩ by (16), (17), and (18)

H0 |j,m⟩ =
gℏ2

2

(
j(j + 1)− 3

2

)
|j,m⟩

This tells us that the state |j,m⟩ is an energy eigenstate of H0 with energy eigenvalue

Ej,m =
gℏ2

2

(
j(j + 1)− 3

2

)
(19)

Now, we need to determine the possible values of j and m. Since we are dealing with two
spin-1/2 particles, s1 = s2 = 1/2. Therefore, by (7), the possible values of j are

j = s1 + s2, . . . , |s1 − s2| = 1 and 0 (20)

We can use (8) to find the possible values of m for each possible value of j. For j = 1, the
possible values of m are equal to

j = 1 : m = 1, 0,−1 (21)

For j = 0, the only possible value of m is zero:

j = 0 : m = 0 (22)

We can now draw a “wedding cake” diagram for the possible values of j and m for this system
of two spin-1/2 particles:

|1, 1⟩
|1, 0⟩ |0, 0⟩
|1,−1⟩

(23)
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Note that as we expect for two spin-1/2 particles, the total number of spin states is 2× 2 = 4.
For the specific case of two spin-1/2 particles, the three states |1, 1⟩, |1, 0⟩, and |1,−1⟩ are
referred to as the “triplet,” and the state |0, 0⟩ is referred to as the “singlet.”

The energy Ej,m only depends on j, so by (19), we can write the possible energy eigenval-
ues:

E1,1 = E1,0 = E1,−1 =
gℏ2

2

(
1(1 + 1)− 3

2

)
=
gℏ2

4
(24)

E0,0 =
gℏ2

2

(
0(0 + 1)− 3

2

)
= −3gℏ2

4
(25)

The problem asks us to evaluate the energy eigenstates in terms of eigenstates of S1,z and S2,z.
We already know that these energy eigenstates are the states |j,m⟩, but the problem is asking
us to write them in the original angular momentum basis |m1⟩ |m2⟩, since that one diagonalizes
S1,z and S2,z by (1).

By (2), m1 and m2 have possible values ± 1
2 , corresponding to spin-up (↑) and spin-down

(↓). Therefore, we need to write the combined basis states |1, 1⟩, |1, 0⟩, |1,−1⟩, and |0, 0⟩ in
terms of the original basis states |↑⟩ |↑⟩, |↑⟩ |↓⟩, |↓⟩ |↑⟩, and |↓⟩ |↓⟩. There is a general method for
deriving these relations, which will be explained after the solution to this problem. However,
for the sum of two spin-1/2 particles, you might already know them:

|1, 1⟩ = |↑⟩ |↑⟩
|1, 0⟩ = 1√

2

[
|↑⟩ |↓⟩+ |↓⟩ |↑⟩

]
|0, 0⟩ = 1√

2

[
|↑⟩ |↓⟩ − |↓⟩ |↑⟩

]
|1,−1⟩ = |↓⟩ |↓⟩

(26)

We can summarize our result as follows:

Energy eigenvalue Energy eigenstates

E1 =
gℏ2

4
Triplet:

|1, 1⟩ = |↑⟩ |↑⟩
|1, 0⟩ = 1√

2

[
|↑⟩ |↓⟩+ |↓⟩ |↑⟩

]
|1,−1⟩ = |↓⟩ |↓⟩

E0 = −3gℏ2

4
Singlet: |0, 0⟩ = 1√

2

[
|↑⟩ |↓⟩ − |↓⟩ |↑⟩

]
(b) This is a first-order time-dependent perturbation theory problem. Here is the relevant deriva-

tion:

Time-dependent perturbation theory:
The key to deriving the formulas for time-dependent perturbation theory is to work in the
interaction picture. For an unperturbed, time-independent Hamiltonian H0 added to a time-
dependent perturbation V (t),

H(t) = H0 + V (t) (27)

we write the interaction picture by folding the time-evolution of each state under H0 into the
quantum operators. If OS is an operator in the (typical) Schrödinger picture, the equivalent
operator OI in the interaction picture is defined by

OI(t) ≡ eiH0t/ℏOS e
−iH0t/ℏ (28)

4 Last revised August 29, 2022



UCLA Physics OPEN-BOOK, OPEN-NOTE Fall 2021 Comprehensive Exam

To make sure that the expectation value ⟨ψ|O|ψ⟩ is the same in both pictures, we must change
the state |ψ⟩ accordingly. If |ψS(t)⟩ is a time-evolved ket in the Schrödinger picture, the
equivalent ket |ψI(t)⟩ in the interaction picture is defined by

|ψI(t)⟩ ≡ eiH0t/ℏ |ψS(t)⟩ (29)

Kets in the interaction picture obey the Schrödinger equation for the perturbation Hamiltonian
VI(t) in the interaction picture:

iℏ
∂

∂t
|ψI(t)⟩ = VI(t) |ψI(t)⟩ (30)

We can integrate this equation (applying the initial condition for the state ψ at a reference
time t0) to get

|ψI(t)⟩ = |ψI(t0)⟩ −
i

ℏ

∫ t

t0

dt′ VI(t
′) |ψI(t

′)⟩ (31)

To lowest order in perturbation theory, |ψI(t
′)⟩ ≈ |ψI(t0)⟩, so this equation becomes

|ψI(t)⟩ = |ψI(t0)⟩ −
i

ℏ

∫ t

t0

dt′ VI(t
′) |ψI(t0)⟩ to lowest order (32)

Now suppose that at t = t0, the system is in an eigenstate |n⟩ of H0, and we are interested in
the transition amplitude to another eigenstate |m⟩. We can then take the inner product of (32)
with ⟨m|:

⟨m|ψI(t)⟩ = ⟨m|n⟩ −
i

ℏ

∫ t

t0

dt′ ⟨m|VI(t′)|n⟩

= δmn −
i

ℏ

∫ t

t0

dt′ ei(Em−En)t
′/ℏ ⟨m|VS(t′)|n⟩ to lowest order (33)

In the second line, we have applied the definition of an operator in the interaction picture (28).
Since ⟨m|ψI(t)⟩ = e−iEmt/ℏ ⟨m|ψS(t)⟩ by (29), this is what we need to calculate transition
probabilities.

In this problem, the perturbation in the Schrödinger picture (which we will call V (t) is

V (t) = ϵ exp

(
− t2

2α2

)
S1,z

= ϵ
ℏ
2
exp

(
− t2

2α2

)
σ1,z since Sz =

ℏ
2
σz for a spin-1/2 particle (34)

and we want to consider the transition probabilities between all initial and final eigenstates.
Recall from part (a) that there are four such eigenstates, given by (26). Equation (33) tells us
how to start:

For all time-dependent perturbation theory problems, start by calculating the matrix ele-
ments of the perturbation Hamiltonian between initial and final states.

The only portion of V (t) that is an operator (as opposed to a prefactor) is σ1,z. Since the Pauli

matrix σ1,z is equal to

(
1 0
0 −1

)
when applied to the spinor

(
a
b

)
∼= a |↑⟩+ b |↓⟩, we can write

the effect of σz in Dirac notation as

σz |↑⟩ = |↑⟩ and σz |↓⟩ = − |↓⟩ (35)
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Therefore, as applied to the eigenstates in (26), the operator σ1,z (which acts on the first
particle’s spin only) yields

σ1,z |1, 1⟩ = σ1,z |↑⟩ |↑⟩ σ1,z |1, 0⟩ = σ1,z
1√
2

[
|↑⟩ |↓⟩+ |↓⟩ |↑⟩

]
= |↑⟩ |↑⟩ =

1√
2

[
|↑⟩ |↓⟩ − |↓⟩ |↑⟩

]
σ1,z |1, 1⟩ = |1, 1⟩ σ1,z |1, 0⟩ = |0, 0⟩ (36)

σ1,z |1,−1⟩ = σ1,z |↓⟩ |↓⟩ σ1,z |0, 0⟩ = σ1,z
1√
2

[
|↑⟩ |↓⟩ − |↓⟩ |↑⟩

]
= − |↓⟩ |↓⟩ =

1√
2

[
|↑⟩ |↓⟩+ |↓⟩ |↑⟩

]
σ1,z |1,−1⟩ = − |1,−1⟩ σ1,z |0, 0⟩ = |1, 0⟩ (37)

Equation (31) tells us that in order for a transition from a state |m⟩ to a different state |n⟩ to
be possible, the state element V (t) |n⟩ must have nonzero overlap with |m⟩. Note that this is
true to all orders in perturbation theory.

Therefore, from (36), we can tell that there are no transitions between the state |1, 1⟩ and
any other states under the perturbation, since the state σ1,z |1, 1⟩ has no overlap with any
other states. Similarly, from (37), there are no transitions between the state |1,−1⟩ and any
other states.

All that is left is to calculate the transition probabilities between the state |1, 0⟩ and the
state |0, 0⟩. By (33), the transition amplitude between |0, 0⟩ and |1, 0⟩ is

⟨1, 0|ψI(+∞)⟩ = − i
ℏ

∫ ∞

−∞
dt′ exp

(
i(E1,0 − E0,0)t

′

ℏ

)
⟨1, 0|V (t′)|0, 0⟩ (38)

We start by calculating the matrix elements of V (t) corresponding to these states:

⟨1, 0|V (t)|0, 0⟩ = ϵ
ℏ
2
exp

(
− t2

2α2

)
⟨1, 0|σ1,z|0, 0⟩ by (34)

= ϵ
ℏ
2
exp

(
− t2

2α2

)
⟨1, 0|1, 0⟩ by (37)

= ϵ
ℏ
2
exp

(
− t2

2α2

)
since the eigenstates |j,m⟩ are normalized (39)

We also need to know the energy difference between the two states, which we calculated in part
(a):

E1,0 − E0,0 =
gℏ2

4
−
(
−3gℏ2

4

)
= gℏ2 (40)

Plugging all this into (38), we get the integral

⟨1, 0|ψI(+∞)⟩ = − i
ℏ

∫ ∞

−∞
dt′ exp

(
i(gℏ2)t′

ℏ

)
ϵ
ℏ
2
exp

(
− (t′)2

2α2

)
= −i ϵ

2

∫ ∞

−∞
dt′ exp

(
− (t′)2

2α2
+ igℏt′

)
(41)
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All that remains is to take the Gaussian integral. The starting point is completing the square
in the exponential:

− (t′)2

2α2
+ igℏt′ = − 1

2α2

(
(t′)2 − 2igℏα2t′

)
= − 1

2α2

((
t′ − igℏα2

)2
+ g2ℏ2α4

)
= − 1

2α2

(
t′ − igℏα2

)2 − g2ℏ2α2

2
(42)

Then, the integral in (41) simplifies to∫ ∞

−∞
dt′ exp

(
− (t′)2

2α2
+ igℏt′

)
= exp

(
−g

2ℏ2α2

2

)∫ ∞

−∞
dt′ exp

(
− 1

2α2

(
t′ − igℏα2

)2)
Making the change of variables u ≡

(
1

2α2

)1/2 (
t′ − igℏα2

)
, we get that∫ ∞

−∞
dt′ exp

(
− (t′)2

2α2
+ igℏt′

)
= exp

(
−g

2ℏ2α2

2

)(
2α2

)1/2 ∫ ∞

−∞
du e−u2

(43)

Using the known Gaussian integral
∫∞
−∞ du e−u2

= π1/2, this gives us∫ ∞

−∞
dt′ exp

(
− (t′)2

2α2
+ igℏt′

)
= exp

(
−g

2ℏ2α2

2

)(
2πα2

)1/2
(44)

Plugging this into (41), we get

⟨1, 0|ψI(+∞)⟩ = −i ϵ
2
exp

(
−g

2ℏ2α2

2

)(
2πα2

)1/2
= −iϵ

(π
2

)1/2
α exp

(
−g

2ℏ2α2

2

)
(45)

This is the transition amplitude; to get the transition probability, we must take the square of
its absolute value:

P|0,0⟩→|1,0⟩ = |⟨1, 0|ψI(+∞)⟩|2

=

∣∣∣∣−iϵ(π2)1/2 α exp

(
−g

2ℏ2α2

2

)∣∣∣∣2
=
πϵ2α2

2
exp

(
−g2ℏ2α2

)
(46)

The probability for the reverse process |1, 0⟩ → |0, 0⟩ is the same as for the forward process
|0, 0⟩ → |1, 0⟩. Since E0,0−E1,0 = −gℏ2, the setup for calculating the amplitude when the case
when the system starts in state |1, 0⟩ (the equivalent of (41)) is

⟨0, 0|ψI(+∞)⟩ = − i
ℏ

∫ ∞

−∞
dt′ exp

(
i(E0,0 − E1,0)t

′

ℏ

)
⟨0, 0|V (t′)|1, 0⟩

= −i ϵ
2

∫ ∞

−∞
dt′ exp

(
− (t′)2

2α2
− igℏt′

)
since ⟨0, 0|V (t′)|1, 0⟩ = ⟨1, 0|V (t′)|0, 0⟩∗

(47)

The integral here is just the complex conjugate of the integral in (41). We calculated that
integral in (44). When evaluated, that integral turned out to be real, so it is equal to its
complex conjugate and we have∫ ∞

−∞
dt′ exp

(
− (t′)2

2α2
− igℏt′

)
= exp

(
−g

2ℏ2α2

2

)(
2πα2

)1/2
(48)
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Following the rest of the same process as we used to get P|0,0⟩→|1,0⟩, we get the same answer:

P|1,0⟩→|0,0⟩ = |⟨1, 0|ψI(+∞)⟩|2

=
πϵ2α2

2
exp

(
−g2ℏ2α2

)
(49)

In summary, we have the following transition probabilities:

P|1,0⟩→|0,0⟩ = P|0,0⟩→|1,0⟩ =
πϵ2α2

2
exp

(
−g2ℏ2α2

)
to order ϵ2 (50)

The states |1, 1⟩ and |1,−1⟩ cannot transition to any other states.

Deriving the spin-1/2 Clebsch-Gordan coefficients:
We now derive the relations between the combined basis and the original basis in (26). Recall the
“wedding cake” diagram of the four states in the combined basis (23):

|1, 1⟩
|1, 0⟩ |0, 0⟩
|1,−1⟩

Here is the appropriate method:

Wedding cake method of computing Clebsch-Gordon coefficients:

↶
↶

|1, 1⟩

|1, 0⟩

|1,−1⟩

−→ |0, 0⟩ (51)

Start at the |j,m⟩ state with largest m (top of the diagram). For each curvy arrow, use the low-
ering operators

J− |j,m⟩ = ℏ
√
(j +m)(j −m+ 1) |j,m− 1⟩ (52)

J1− |m1⟩ |m2⟩ = ℏ
√
(j1 +m1)(j1 −m1 + 1) |m1 − 1⟩ |m2⟩ (53)

J2− |m1⟩ |m2⟩ = ℏ
√
(j2 +m2)(j2 −m2 + 1) |m1⟩ |m2 − 1⟩ (54)

with J− = J1− + J2−.
For each straight arrow, use the orthogonality of different eigenstates.

We’ll now explain how to apply this method in the context of this problem.

To avoid getting stuck in a quagmire of algebra, and to keep the focus on the problem-solving method,
we will pre-calculate some values of the proportionality constant f(j,m) ≡

√
(j +m)(j −m+ 1)

that appears in the formulas for the lowering operator:

(j,m) f(j,m) ≡
√
(j +m)(j −m+ 1)

(1, 1)
√
2

(1, 0)
√
2

(1/2, 1/2) 1

(55)

Then, in the context of this problem, since we have two spin-1/2 particles, equations (52)-(54)
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become

S− |j,m⟩ = ℏf(j,m) |j,m− 1⟩ (56)

S1− |m1⟩ |m2⟩ = ℏ f(1/2,m1) |m1 − 1⟩ |m2⟩ (57)

S2− |m1⟩ |m2⟩ = ℏ f(1/2,m2) |m1⟩ |m2 − 1⟩ (58)

We are now ready to start working our way through the wedding cake diagram:

Starting point: |1, 1⟩
Recall that m1+m2 = m (by (13)). In this case, m = 1. Since we have two spin-1 particles, m1 and
m2 can be at most 1/2 (by (2)). Thus, the only possible original eigenket that can contribute to
the combined eigenket |1, 1⟩ is |↑⟩ |↑⟩ (recall that |↑⟩ has mi = 1/2). We can set the normalization
of |1, 1⟩ so that the prefactor is equal to 1, getting

|1, 1⟩ = |↑⟩ |↑⟩ (59)

Lowering operator: |1, 1⟩↷ |1, 0⟩
↶

↶
|1, 1⟩

|1, 0⟩

|1,−1⟩

−→ |0, 0⟩

Lowering |1, 1⟩ with the S− lowering operator for total angular momentum and applying table (55),
we get

S− |1, 1⟩ = ℏf(1, 1) |1, 1− 1⟩ =
√
2ℏ |1, 0⟩ (60)

But S− = S1− + S2−, so we can also use perform this lowering operation in the original basis
(recalling that |↓⟩ has mi = −1/2):

S− |1, 1⟩ = (S1− + S2−) |1, 1⟩
= (S1− + S2−) |↑⟩ |↑⟩ by our earlier calculation of |1, 1⟩ in the original basis (59)

= S1− |↑⟩ |↑⟩+ S2− |↑⟩ |↑⟩
= ℏ f(1/2, 1/2) |↓⟩ |↑⟩+ ℏ f(1/2, 1/2) |↑⟩ |↓⟩ by (53) and (54)

= ℏ |↓⟩ |↑⟩+ ℏ |↑⟩ |↓⟩ by table (55) (61)

Setting (60) and (61) equal to one another, we get
√
2ℏ |1, 0⟩ = S− |1, 1⟩ = ℏ |↓⟩ |↑⟩+ ℏ |↑⟩ |↓⟩

Simplifying, we get an expression for |1, 0⟩ in the original basis:

|1, 0⟩ = 1√
2

[
|↑⟩ |↓⟩+ |↓⟩ |↑⟩

]
(62)

Note that this expression is correctly normalized, which is a useful check that our work is correct. (We
could have skipped calculating the overall constant in (60) and used the normalization to calculate
it. Calculating the overall constant is a useful algebra check, though, so we have opted to include it.)

Lowering operator: |1, 0⟩↷ |1,−1⟩

↶
↶

|1, 1⟩

|1, 0⟩

|1,−1⟩

−→ |0, 0⟩
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This is exactly the same process. Lowering |1, 0⟩ with the S− lowering operator for total angular
momentum and using table (55), we get

S− |1, 0⟩ = ℏf(1, 0) |1, 0− 1⟩ =
√
2ℏ |1,−1⟩ (63)

But S− = S1− + S2−, so we can also perform this lowering operation in the original basis (noting
that |↓⟩ vanishes upon lowering):

S− |1, 0⟩ = (S1− + S2−) |1, 0⟩

= (S1− + S2−)

(
1√
2

[
|↑⟩ |↓⟩+ |↓⟩ |↑⟩

])
by (62)

=
1√
2

(
S1− |↑⟩ |↓⟩+ S1− |↓⟩ |↑⟩+ S2− |↑⟩ |↓⟩+ S12 |↓⟩ |↑⟩

)
=

1√
2

(
ℏ f(1/2, 1/2) |↓⟩ |↓⟩+ ℏ f(1/2, 1/2) |↓⟩ |↓⟩

)
=

1√
2

(
ℏ |↓⟩ |↓⟩+ ℏ |↓⟩ |↓⟩

)
by table (55)

=
√
2ℏ |↓⟩ |↓⟩ (64)

Setting (63) and (64) equal to one another, we get
√
2ℏ |1,−1⟩ = S− |1, 0⟩ =

√
2ℏ |↓⟩ |↓⟩ (65)

Simplifying, we get an expression for |1,−1⟩ in the original basis:

|1,−1⟩ = |↓⟩ |↓⟩ (66)

As before, this state is correctly normalized.

Orthogonality: |1, 0⟩ → |0, 0⟩

↶
↶

|1, 1⟩

|1, 0⟩

|1,−1⟩

−→ |0, 0⟩

Since m1 +m2 = m and mi = 1/2,−1/2, we know that |0, 0⟩ must be the sum of |↑⟩ |↓⟩ and |↑⟩ |↓⟩.
But since |j,m⟩ is an orthonormal basis, |0, 0⟩ must be orthogonal to |1, 0⟩. Recall our expression
for |1, 0⟩ in the original basis (62)

|1, 0⟩ = 1√
2

[
|↑⟩ |↓⟩+ |↓⟩ |↑⟩

]
There is only one vector that is orthogonal to this one, and (up to an overall phase) we can set it
equal to |0, 0⟩:

|0, 0⟩ = 1√
2

[
|↑⟩ |↓⟩ − |↓⟩ |↑⟩

]
(67)

This completes the derivation of the eigenstates in the original basis:

|1, 1⟩ = |↑⟩ |↑⟩
|1, 0⟩ = 1√

2

[
|↑⟩ |↓⟩+ |↓⟩ |↑⟩

]
|0, 0⟩ = 1√

2

[
|↑⟩ |↓⟩ − |↓⟩ |↑⟩

]
|1,−1⟩ = |↓⟩ |↓⟩

The coefficients which relate the combined basis to the original basis are known as “Clebsch-Gordan
coefficients.” For small values of j, you can look them up in a table (just make sure you know how
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to read such a table first).

Angular momentum problems are very frequent on the comp. For more practice, try 2020 Q3,
2017 Q3, and 2015 Q4. For a special challenge, try 2015 Q6 and 2011 Q4.
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