Solutions to Practice Questions for the Comprehensive Exam - Day 1

18. For sufficiently small displacements, motion along the direc
rods is decoupled from motion normal to the rods. Denoting displ&®
along the rod by (z,, %;, ;) and those normal to the rod by (¥1> Y2’

find that the Lagrangian is
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The last term is constructed so as to vanish when all the particles lie

a straight line.
Motion in the z-direction is governed by the equations
mil + k(xl - xg) = O, mﬁa + k(x3 s xz) = O’
2mﬁ2 M k(2x2 — X — x3) = 0.
Conservation of momentum requires that %, + 2%, + & = 0. This condi.tion
implies that there are only two normal modes for vibration in the z-direc-
tion. The normal modes are

x, — x5 with frequency (k/m)'”

d |
o x, — 2z, + x; with frequency (2 k/m)”.

Motion in the y-direction is constrained by conservation of angular mo-
mentum, as well as linear momentum. Consequently there is only one mode
of vibration, with frequency (4%'/m)'”?. The modes may be sketched as in

the accompanying figure.
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40. (a) Any collection of particles has a center.of mass vel
= velocity

V= ___P (tOta‘l)
E (total)’

—

ag can be seen from the Lorentz transf: i

— Ev); p'. = py. Choosing v Jrmeuon of momentum g, —
(P ;PL=2P1 g v parallel to p, we see p' = 0 when v = p/E
In our case the result isv = (p, + P)(E,.+ E). ki
(b) The total energy and momentum constitute a Lorentz four-vector:

hence the quaptity [(E. + E_)® — (p+ + p_-)*] is an invariant. The bary-
centric frame is the one in which p’, + p_ = 0; as m, = m_, one also has
E'. = E’ in this frame. Thus ,

4L, = (E, + E.) — (p+ +p-)
or finally

g, — g =Y E B — (. T p).

(¢) Consider the invariant I = (p. — p-): — (E, — E_)*. In the rest frame
of the electron, p_ = 0, E_ = m, we find that E, = m/~/1 — v2, where

Vre1 18 the relative velocity. Thus

| 2m?

1 7z
UTT?; — 2m?, and we have v, = [1 o (l + _2_1_?)2} .
m



3. Quantum Mechanics (Fall 2006)

Consider two flavours of massive neutrinos, denote |v.) the electron neutrino flavour eigenstateand |v,,)
the muon neutrino flavour eigenstate. These are related to the energy eigenstates |v1) and |v5) by

lve) = cos(8) |v1) — sin(8) |va)
lvu) = sin(8) 1) + cos(6) [va)

(a) Show that flavour eigenstates and energy eigenstates are related by a unitary transformation

(b) The energy of the eigenstate |v;) is

E; = \/p%c?2 + mi*ct, i=1,2

Assume that an electron neutrino is produced in the sun with momentum p such that |p| > mjc.

Find the probability for the electron neutrino to oscillate into a muon neutrino after travelling a
distance L.
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QuaNTUM MECHANICS—SOLUTIONS 161
18.

Then © the amplitudes for states 1 and 2 be C, and C,.

d
P — H,\C, + HiC = BiC, + V20,

dC = H,,C, + H,,C, = Viily + E.C,.
IfC, = A,e~tu and 0y = A,e~t% one has
A(W E)-V12A2=0a l ;“2+(E2-~W)A2=0.
Self-consmtency requires
Vis W—g

W—E = gt or W,=EtB), (BB +4IVull"

Then, one may write

C, = A e fwet + Ble-iw-t’ Cy = A,e 1t + B,e-tw-t,

The coeﬁcients obey the constraints (not all of them independent):

4, _ 2V,
4y, (Ba—E)+ VB, — By 14|Vl
B, _ 2V,

BZ (E -El)_’\/(El—EQ)2+4‘V12‘
and

A1+Bl=1) A2+B2=03 A?+B%+Ag+B§=1’

AIBI + Ang = O.
The solutions are
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2 Vi = —B,.
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35. The first-order Born-approximation scattering amplitude is

S m 1K-rd3
10, ¢) = 57 J Vir)e r,
where K = k, — k,. Therefore

f0,4) =a ; J S(r — r)eKrd’r =a 2; etkem,

One obtains maximum scattering when the contributions from each lattice
point are in phase. We choose a lattice point r, = d(n,& + n.§ -+ n,2) where
the n; are integers, and this condition becomes |

dK X = 27l; dK-§ = 27m; and dK-.2 = 2nn,

where (I, m, n) are integers (the so-called Miller indices). Thus K is normal

to the set of lattice planes defined by (lmn) (see the figure on p. 174). The
magnitude of K then satisfies

Kd = 27 (I + m® + n®)'2. (1)

— X |

=~
+

In terms of the scattering angle from the reflection planes,
K? = (k; — k;)? = 2k*(1 — cos 20) = 4k? sin? 4,

Eq. (1) becomes kd sin 0 = (1> + m? + »?)/2, which is the Bragg condition
for reflection from a set of planes of spacing d(I* + m? + n?)~1/2,



Jution 3.3 a) The general form of the Hamjlto:.. -
3{0 an electromagnetic field is mitonian in the Presence

1 e \?2
P=2A) +ep, (1231)

where A and ¢ are t.he'vector and scalar potentials. A convenient choice
of gauge which minimizes cross terms in (12.31) is

A = (Bz,0,0), ¢ = —Ez, (12.32)

where we can checkthat B=V x A and E = -V é. The Schrodinger
equation in this gauge is

1 e 2
Hy = [EE{{(” - sz) + 1} +p§} = eEz] b =EY, (12.33)

with £ the energy.

b) To separate variables, we note that equation (12.33) has no terms
involving either z or y, which suggests a simple solution for these two
variables. It is easy to check that the solutions in the z- and y-directions
are plane waves, so we write

B(a,y, 2) = R ibavg () (12:34)

Substituting this into the Schrédinger equation gives

B-n- { (nk, - %Bz)z + k2 + pi} - eEz] ¢ =E9, (12.35)

which is a one-dimensional problem.

c) Rearranging terms and collecting the constants into £’ gives us
the equation

2 eB mEc ¢ .
{p, + (Tz ~ bk, - T ) } $=E'9, (12.36)

which we rec?gnige to be that of a simple harmonic oscillator (cen'cered
:{l‘_)und a point other than the origin). The expectation value of z in
18 case 1s simply the position 2z where the potential is a minimum:

(2) = = (#ke + ""BEc) , (12.37)




3.4. HARMONIC OSCILLATOR PERTURBATIONS 127

We want to find the expectation value of v, Using the standard result

that 4hv = shdz/dt = [z, H] and the commutation relation [z,p:] = 1h
we find 1

_ 1 _eb _ Ec
(ve) = — ((pz) - (z)) == (12.38)
where we have used (p;) = hk,.

We recognize this as the classical result, found by requiring that the

total electromagnetic force on the particle in the z-direction vanish:

F,:e(E+yc—xB)~:“c=0. (12.39)



|

2
B o= 2,1
0 2m+2k(2

V, = qu—(t/"')zz’

and where V'(t) is assumed to be small.

It is usually easier to solve problems mvolving a simple h
armonic

oscillator potential using raising and lowering o
. . erators. .
the unperturbed hamiltonian Hj as g operators. We can write

Ho = holata. +ata + g 4 o
0 (a;a'z + a'ya'y + a'za'z + 'é'), (1242)

where we have defined:

k

w = —TE’ (12.43)
/2 )
t = T_w)l ( _r ) 12.44
bz = (2h z mwp’B ’ (1244)
mw\1/? i )
= [ —_— 12.45
9 = (2n) (‘”mwp’ ’ (1245)



128 CHAPTER 12. QUANTUM MECHANICS

Wti th ana,logou? (?eﬁflitions for Gys al, a,, and a!. The operators a and
at are the annihilation and creation operators from which we can form
the number operator,

ata|n) = n|n), (12.46)
where n is some integer. The eigenstates of Hy are therefore
In> = 'nmnwnz), (1247)

where n,n, and n, are integers. The energies are given by

Ho |ng, gy 2 ) = iw(ng +ny + 712 + -;—) [Ny gy Mz ). (12.48)

Using the eigenstates of H, as a basis we can write an arbitrary
wavefunction as |
W) = 3 ca(t) [n)eE0/, (12.49)
n

where the cp(t) are complex coefficients. If the initial state at { = —o0
is |s), then ¢,(—o0) = 1. According to time-dependent perturbation
theory at t = +oo0, to first order in the perturbing potential V!,

5 1
ealtoo)l = 22
where V!, = (n|V'|s), and wns = (En — E,)/h. This result is not hard
to derive from Schrédinger’s equation if we write the wavefunction in
the form (12.49). In this problem, s labels the ground state: s =
(0,0,0). Therefore the probability that the system is in any excited
state at t = 400 is given by the sum

Pr= ; len(+00)? . (12.51)

To evaluate this sum, we need the matrix elements of V'(t), which are

(e, gy [V'(2)]0,0,0) = gAe=®P (n, 1y, m, |2] 0,0,0). (12.52)

+00 P
/ VI (¢)eonst dt| (12.50)

g::r;l;ng f in terms of the raising and lowering operators, we can 5€¢
only connects states whose values of n, differ by one, so that

1 —(¢/r)2 k 2
Vie = qAe~C/7) (2mw) AN (12.53)



3.5. RESONANCE SCATTERING .
29

and only one term in the sum is nonzero. The desired probability is

P= A,

Ohmw (12.54)

with :
+o00 3 2
I= f e~ (/) eiwtgy (12.55)

This integral can be evaluated by substituting u = ¢/7, completing the
square in the exponent, and evaluating the resulting gaussian integral.
This yields

? A% R

P= 2mwh

(12.56)






