1. Quantum Mechanics (Fall 2006)

(a) For a spherically symmetric potential, show that the radial part of a wave function obeys the radial Schrodinger
equation

2m dr? 2mr2

( ! d2+l(l+1)+V(r)—E>uz(r)—O

Assume that the potential V' (r) vanishes rapidly for large r and is less singular than 1/72 for small r.
(b) Derive the behavior of u;(r) for r — 0.

(¢) Derive the behavior of u;(r) for large r (r — 0o0) when it describes a bound state.



2. Quantum Mechanics (Fall 2006)

The spin degree of freedom of a spin 1/2 particle with mass m can be described in a basis |+), where
o3l+) =++), o3l-)=—I-),

and where o3 is the third Pauli matrix. The spin operator for a single fermion is S5 = %O’g.

(a) Two identical fermions of spin 1/2 are initially assumed to be noninteracting. For this part of the problem take
only the spin degrees of freedom into account. Construct the singlet state, i.e., the state for which the total
spin of the two-fermion system satisfies S5 = 0 and S? = 0.

Now consider that the two spin 1/2 fermions are both moving in a one dimensional infinite square well with potential

oo <0
Vie)=q¢—-a 0<z<L
oo x>1L

For the rest of the problem take both the spin degrees of freedom and the spatial wavefunction into account.

(b) What does the Fermi exclusion principle imply for the wavefunction of the two-fermion system? What does
this imply for the spatial wavefunctions of the singlet state?

(¢) Find the normalized wavefunction of the two-fermion system which has the lowest energy and is a singlet. Find
the energy eigenvalue for this state.

(d) Now assume that there is a small interaction of the form
‘/int(xly l’g) = —« 6(1‘1 — 372)

To lowest order in perturbation theory find the change in energy of the ground state due to the interaction.



3. Quantum Mechanics (Fall 2006)

Consider two flavours of massive neutrinos, denote |v,) the electron neutrino flavour eigenstateand |VM> the muon
neutrino flavour eigenstate. These are related to the energy eigenstates |v1) and |v2) by

|ve) = cos(f) |v1) — sin(0) |v2)
|vu) = sin(d) [v1) + cos(6) |v2)

(a) Show that flavour eigenstates and energy eigenstates are related by a unitary transformation.
(b) The energy of the eigenstate |v;) is
pic2 +mi2ct, i=1,2

Assume that an electron neutrino is produced in the sun with momentum p such that |p| > m;c. Find the
probability for the electron neutrino to oscillate into a muon neutrino after travelling a distance L.



4. Quantum Mechanics (Fall 2006)
Consider a quantum mechanical system with Hamiltonian
H=a'a
Where a and a' are operators satisfying the following relations
=0, (@H?=0 alatadt =1

(a) Show that the Hamiltonian satisfies
H*=H
(b) Find the eigenvalues of the Hamiltonian H.

(c) If |0) is the unique normalized ground state of the system (i.e., the state with the lowest energy eigenvalue)

find
al0) =7

Under the assumption above, what dimension can the complete Hilbert space of states have?



5. Quantum Mechanics (Fall 2006)
A neutron (mass M) scatters off a very heavy nucleus, and the force between them is given by a Yukawa potential:
e M

Vo) =

(a) Imagine you could find the solution ¥(r) to the time-independent Schrédinger equation (with an incident wave
in the +z direction) with this potential for positive energy E. Write a formula for the scattering amplitude in
terms of this wave function. Don’t try to calculate i (r). Define any symbols you introduce, other than those
in V(r) above and natural constants.

(b) What is the first Born approximation to the scattering amplitude f(6, ¢)?

(¢) What is the total cross section in the limit that the scattering neutron has zero kinetic energy?



6. Statistical Mechanics and Thermodynamics (Fall 2006)

Consider a set of spin one-half particles in a magnetic field, H, oriented in the z direction. There is no interaction
between the particles, and the energy of interaction of particles with this magnetic field is given by

N
Ey=—pup Yy siH
=1

where pp is proportional to a Bohr magneton, and the quantities s; can take on the values 1. We will forget about
the g factor for the moment. The Boltzmann factor governing the equilibrium statistics of these moments is e~ |
where = 1/kgT.

(a) Obtain an expression for the total magnetic moment of this system of moments in the presence of the external
field.

(b) The specific heat of this system in the absence of an externally applied field is given by
Crly_y = AT?

Use this information and the solution to part a) of the question to obtain an expression for the magnetic Gibbs
potential, G(T, H, N) of this system of spins. This expression may contain undetermined coefficients.

(¢) From your result above, find the condition that applies when an external magnetic field is introduced or removed
adiabatically.



7. Statistical Mechanics and Thermodynamics (Fall 2006)

Consider a gas of noninteracting particles for which the kinetic energy of each has the following dependence on
momentum

E(p) = |plc

These particles obey Boltzmann statistics. There are N of them, occupying a volume V.
(a) Find the partition function of this system of particles.

(b) What is the heat capacity at constant pressure of this system of particles?



8. Statistical Mechanics and Thermodynamics (Fall 2006)

(a) Consider a grand canonical ensemble of particles, at fixed temperature T and in a container of volume V. Show
that the mean square fluctuation in the number of particles (AN)?2 is:

— ON
AN)?2 = kT —.
(AN)? = kp a

(b) Using the relation:
SdT —Vdp+ Ndp =0
express the solution in terms of (9p/0p)r,v where p = pressure and p = N/V is the density of the system.

(c) Since intensive quantities are independent of extensive quantities by definition, we can change external con-

StIaiIltS t() Obtain:
] T,(/ ] I'N .

Using this relation, find an expression for (AN)?2 in terms of the isothermal compressibility k7 = — % OV /Op)r N



9. Statistical Mechanics and Thermodynamics (Fall 2006)

Consider an idealized “white dwarf” star made up of ionized helium only. We make several simplifying assumptions,
namely:

— there is no radiation pressure

— the electrons form a completely degenerate (i.e., “T' = 0”), ultrarelativistic (“m, = 0”) Fermi gas

— the density p is uniform.

Set up the condition for mechanical equilibrium of the star under the opposing influences of the gravitational force
and the pressure of the Fermi gas. You will find that, with these approximations, equilibrium is possble for only one
particular value of the mass of the star, M (this mass ic called the “Chandrasekhar limit”). Give the value of M in
terms of fundamental constants.

(Note: This calculation, with m. = 0, overestimates the pressure; in reality equilibrium is possible for masses smaller
and up to the Chandrasekhar limit.)



10. FElectricity and Magnetism (Fall 2006)
A spherically symmetric potential ®(r) is given by

where f(r) — Aasr — 0 and f(r) — B as r — oo. f(r) is a non-singular function.

(a) What is the total charge of this system? Give the answer in terms of A, B, f(r), and (possibly) derivatives of
f(r).

(b) Identify any point charges in this system and give their location and charge.

(¢) Find the charge density p(r) for this system. Give the answer in terms of A, B, f(r), and (possibly) derivatives
of f(r).



11. FElectricity and Magnetism (Fall 2006)

Consider an electromagnetic wave incident from vacuum onto a dielectric with a dielectric constant, e. The surface
normal lies along the Z axis.

(a) Derive the reflection and transmission coefficients if the wave is incident along the Z direction.

(b) Derive the reflection and transmission coefficients if the wave is incident in the Xz plane with an angle 6; with
respect to the surface normal and the electric field is in the y direction. Is there an angle for which there is no
reflected energy?



12. Flectricity and Magnetism (Fall 2006)

Consider a single electron interacting with electric and magnetic fields obtained from the corresponding scalar and
vector potentials.

(a)

(b)

If the fields do not depend explicitly on time then the energy is conserved. Start from the equation for the
time rate of change of energy for a single charged particle and derive the relativistically correct expression for
the energy.

Consider a one-dimensional problem where the fields only depend on one spatial variable. Suppose the fields
are described by a scalar potential of the form ¢ = ¢ cos(kz — wt). What is the constant of the motion in the
laboratory frame now?

Hint: Take a linear combination of the conservation of energy equation and the conservation of momentum
equation. Use this constant to determine how large ¢y must be in order that an electron that starts from rest
at z =0 at £t = 0 is trapped by the wave and to determine the maximum energy that the electron can obtain.

Consider a fully three-dimensional case. If both the scalar and vector potential are functions of (z,y, z — vgt),
where vy is the phase velocity, then the energy is no longer a constant. What is the new constant?

Hint: Take a linear combination of the conservation of energy equation and the component of the conservation
of momentum equation in the z direction.



13. FElectricity and Magnetism (Fall 2006)

Consider a charge ¢ moving on a circle of radius a (centered at the origin) on the xy-plane, with constant angular
velocity w.

(a) In the dipole approximation, calculate the power radiated per unit solid angle in the direction defined by the
polar angle 6 (i.e., 6 is the angle with the z-axis).

(b) Still in the dipole approximation, what is the state of polarization of the radiation emitted in the direction
6 =07 And 0 = /27

(c) Going beyond the dipole approximation, show that radiation is emitted also at frequencies other than w (what
frequencies?).

You may want to follow the steps below:

— show that if p(x,t) is periodic in time (but not necessarily of the form p(x)e~**) with period T' = 27 /w,
then one can write

1 00 i 9 T -
— inw _ inw >
p(x,t) 2p0(x) + 3:1 Re {pn(x) e ] where p,(x) T /0 dt p(z,t)e (n>1)

— recall that the multipole moments are gy, = [ d*z Vi, (0, ¢) ! p(2)

Write p(x) in spherical coordinates for this problem, and using the expression above, find the frequencies at
which the different multipole terms radiate.



14. Flectricity and Magnetism (Fall 2006)

Consider a rotating sphere with radius R. A charge @ is distributed homogeneously over the sphere. The sphere
rotates counter-clockwise around the z-axis with angular velocity w. (See figure below.)

Z

(a) Find the charge density p and the current density j in terms of delta functions. Show that V-j = 0.
(b) Find the vector potential A(x) in the Coulomb gauge (V- A =0).

Hint: To do the integral it is advantageous to choose r = re, and choose w to be arbitrary.

(¢) Calculate the magnetic field B from the vector potential A.



1. Quantum Mechanies (Fall 2006)
(a) For a spherically symmetric potential, show that the radial part of a wave function obeys the radial

Schrodinger equation
1 d2 £(£+1) __
(__2m L) v~ )mw =0

Assume that the potential V(r) vanishes rapidly for large r and is less singular than 1/ r? for small r.

(b) Derive the behavior of u(r) for r — 0.

(¢) Derive the behavior of w(r) for large r (r — oo) when it describes a bound state.
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Quandtvum Mechanics (Fall 2006)
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2. Quantum Mechanics (Fall 2006)
The spin degree of freedom of a spin 1/2 particle with mass m can be described in a basis |+), where

o3|+) =+|+), os|-)=—|-),
and where o3 is the third Pauli matrix. The spin operator for a single fermion is 53 = %03.

(a) Two identical fermions of spin 1/2 are initially assumed to be noninteracting. For this part of the
P g P
problem take only the spin degrees of freedom into account. Construct the singlet state, i.e., the
state for which the total spin of the two fermion system satisfies S3 = 0 and 52 = 0.

Now consider that the two spin 1/2 fermions are both moving in a one dimensional infinite square
well with potential

oo <0
Viz)=4—a O0<z<L
oo x>L

For the rest of the problem take both the spin degrees of freedom and the spatial wavefunction into
account.

(b) What does the Fermi exclusion principle imply for the wavefunction of the two fermion system?
What does this imply for the spatial wavefunctions of the singlet state?

(c) Find the normalized wavefunction of the two fermion system which has the lowest energy and is a
singlet. Find the energy eigenvalue for this state.

(d) Now assume that there is a small interaction of the form
Vint (21, 22) = — (21 — 22)

To lowest order in perturbation theory find the change in energy of the ground state due to the

interaction.
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Z. Quantyn, HMechanics (Fall 2006)
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Hector
Sticky Note
Wrong.  These are identical particles!!! In the ground state, the wf will reduce to this.


7. Quantum Nechandcegs (Fall 2006)

C] (Con'ﬁ'nuc:?”

Lowest thﬁ/e,‘{' e’/hc,rg); &flj&hfﬁ"'ﬂ%’(’.
2  spatially W-even state with lowest B,

= N, =hn, and n,=n, = |
= Yn (x,! T 't) o ({;) sin ({L’G') Sita (l:)(”-) T t/tr(f-k -2-{- +>)

with  E, = _jﬂ_(ﬁf)?"_ Za

2

o ke
d) 2" - (x| VerlX 2> = "“L{{(“E) s (T%) si (£) 3.~ x,) dx, dx,

®R

L
(.J‘ S ( )d(?( Whewre S{nlre - ¢ ‘Jiﬁf’SZS)Z: ;.L ~tos 28 + 1’;&,‘;""29

—

,, _
" ] [ s (B 4 eos(3)
o
..-_q -’{:’
A el gn)] - %D s


Hector
Sticky Note
The integral was done wrong: can confirm via mathematica that it should be 3a/2L


3. Quantum Mechanics (Fall 2006)

Consider two flavours of massive neutrinos, denote |v.) the electron neutrino flavour eigenstateand \up>
the muon neutrino flavour eigenstate. These are related to the energy eigenstates |v1) and |vg) by

lve) = cos(8) |v1) —sin(d) |v2)
lvu) = sin(8) |v1) + cos(6) |v2)

(a) Show that flavour eigenstates and energy eigenstates are related by a unitary transformation.
(b) The energy of the eigenstate |v;) is
p2c? + m;%ct,

Assume that an electron neutrino is produced in the sun with momentum p such that |p| > msc.
Find the probability for the electron neutrino to oscillate into a muon neutrino after travelling a
distance L.
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4. Quantum Mechanics (Fall 2006)

Consider a quantum mechanical system with Hamiltonian
H=adla

Where a and a! are operators satisfying the following relations

a2=0, (@)?=0 dlataal =1

(a) Show that the Hamiltonian satisfies
Hi=H

(b) Tind the eigenvalues of the Hamiltonian H.

(¢) If |0 is the unique normalized ground state of the system (i.e., the state with the lowest energy
eigenvalue) find

al0) =7
Under the assumption above, what dimension can the complete Hilbert space of states have?
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5. Quantum Mechanics (Fall 2006)

A neutron (mass M) scatters off a very heavy nucleus, and the force between them is given by a Yukawa
potential:
e—"!}‘i"

Vir)=W o

(a) Imagine you could find the solution #(r) to the time-independent Schrddinger equation (with an
incident wave in the +z direction) with this potential for positive energy E. Write a formula for the
scattering amplitude in terms of this wave function. Don’t try to calculate ¥ (r). Define any symbols
you introduce, other than those in V(r) above and natural constants.

(b) What is the first Born approximation to the scattering amplitude f{(6, ®)7

(c) What is the total cross section in the limit that the scattering neutron has zero kinetic energy?
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5 Quantum Mechanics (Fall 200¢)
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8. Statistical Mechanics and Thermodynamics (Fall 2006)

(a) Consider a grand canonical ensemble of particles, at fixed temperature 7" and in a container of volume
V. Show that the mean square fluctuation in the number of particles (AN )2 is:

(AN = kBT@E

(b) Using the relation:
SdT —Vdp + Ndp =0 (1)

T

N
Bp) where p = pressure and p = v is the density of the system.
TV

express the solution in terms of ( 5
yo

(¢) Since intensive quantities are independent of extensive quantities by definitino, we can change external

Using this relation, find an expression for (AN)? in terms of the isothermal compressibility k7 =
o (@)
V\0p/rn

A e e 2 -
a) (aN)" = N - N i = =B Bams
Grand ?ar'ﬁ‘h'an Linchins Z. = é Z(N) e Where Z(N) - Qn) =

s W 22 *ﬁ(EMM“ﬂM.__, Z’e’ﬁ(E{*,ﬁN:J

N &) i
"_P(E.i"}ANZ) 2 -BlE.-uN;) 5
T\I:Eijie L bt PE F:gNzep ! _ L L dx
(! P z 9 / £ 522 9}41
kT PN _l_l(..L_L. ElZ_)_; *L(ﬂ—]—-,a_%)_?_% L i 9%
om B\ B R Ik B\ R ou/ 3 T BT E 24t
_ “Nl +“’"{ - (éN)Z /
5 4 ;
b) (5%1.‘, =2 jJ:JJ(f’,T,v') = l\i%hr—w NCe,T,v) = Nule,T), T,V)
N = N[}(,T
AE) LN x 2 ) /o
(-9? TV 4 BFXTI_\; B ( )Tv (9?) 7 ( - V(Q‘P )Ty/(af:)‘r
i VdP - S4T vV 1%
(1] = du = N = ﬁ&{? = gﬂ{T = /u=)u(l3ﬂ'} and (5?)1-: N
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e L/ Y =
) (5-5.)1-;54 = f:/(?‘ Tl V(T,T,N)
av N
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J— T o
aN): = kTN {aP) k 3 (kT B |
* Proof: f
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10. Electricity and Magnetism (Fall 2006)
A spherically symmetric potential ®(r) is given by
f(r)
o(r) = 172
=L
where f(r) — Aasr— 0 and f(r) — B asr — 0. f(r) is a non-singular function.

(a) What is the total charge of this system? Give the answer in terms of A, B, f(r), and (possibly) derivatives of
f(r).

(b) Identify any point charges in this system and give their location and charge.

(¢) Find the charge density p(r) for this system. Give the answer in terms of A, B, f (r), and (possibly) derivatives
of f(r).

B [ > ]
r

=27 !Qh& = *‘8"’ I wp(cfe K‘-‘—
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_ £) A N
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Note: Care was needed in deair’ng with +he a’:‘ve«rje;mcc +s
retain the Dirace delda.



10. FElectricity and Magnetism (Fall 2006)
A spherically symmetric potential ®(r) is given by

P(r) = -‘ﬂrﬂ

where f(r) — A asr — 0 and f(r) — B as r — oco. f(r) is a non-singular function.

(a) What is the total charge of this system? Give the answer in terms of A, B, f (r), and (possibly)
derivatives of f(r).

(b) Identify any point charges in this system and give their location and charge.

(¢) Find the charge density p(r) for this system. Give the answer in terms of A, B, f(r), and (possibly)

derivatives of f(r).
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Hector
Sticky Note
Nope.  This should be a negative sign.


14. Electricity and Magnetism (Fall 2006)
Consider a rotating sphere with radius R. A charge @ is distributed homogeneously over the sphere. The
sphere rotates counter-clockwise around the z-axis with angular velocity w. (See figure below.)

2

(a) Find the charge density p and the current density j in terms of delta functions. Show that V-j=10

(b) Find the vector potential A(x) in the Coulomb gauge (V- A = 0).
Hint: To do the integral it is advantageous to choose r = re, and choose w to be arbitrary

(¢) Calculate the magnetic field B from the vector potential A.

Gl ] Q ] Q =
) f(v) = TRt 9(r-R) ﬁ{;;md.f = e fs(v--m rtdedn = g g2 R Hr
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. E-IEc'i'n'ci*?—y and Magnetism (Fall 200¢)
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