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(b) Let variables in'the neutron rest frame be primed, and those in the
earth frame be unprimed. The angles made by the decay product with

tron velocity (desi
respect t0 the neu y (designated as along the z-axi
¢ in the two systems. The relation £ Shezaxie) aro ¢ and

tan @ = _!.. u' sin 6’
v u cos@ + v

where u' is the velocit)f of the decay product in question, is derived in the
preceding problem. This relation can also be found from the Einstein addi-
tion law for velocities.

Both the neutrino and electron are ultrarelativistic in the primed frame.
For the electron, d(tan 6)/d6’ = 0 implies cos ' = —u’[v. Then

u,/v 1 ~ 'Yelectron
Yo A1 — (u'Jv)? Yem.
Now om. = 3.15 X 10%, while «,,., (electron) ~2.6. We see Onux=

10-* rad.
(c) The method of (b) breaks down when (u’ = 1) > v, since this would lead
to cos @' < —1. The largest angle 6 is 7 ; we obtain this for backward motion

in the neutron rest frame.
(d) In the neutron frame, the neutrino has maximum energy

E, ~ My— M, — M, =08 MeV.

tan 0,,.,x =

And for a neutrino emitted backwards in the lab frame,

Emex = ,Y[E’ + v p']

_ Byl — o)~ By

~ E  ~1276V.
2’YC.M.
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The kinetic energy, which separates into a terrfl due to the beagd’s mo.
tion along the wire and a term due to the rotation of the bead with the

wire, 18

T = %ma’éz + %mwz(a sin §)?. (10.80)
The Lagrangian is L = T — V. Using Lagrange’s equation,
d (0L 0L
== -7 =0 10.81
dt (ao) 96 (1081)
we find that
a6 + gsinf — aw? cos fsin b = 0. (10.82)

At an equilibrium point § = 0, so g = aw? cos 8, or w? = g/a cos §. This
equation has a solution for w only if w? > g/a, so the critical angular
velocity 1s

we=1/2, (10.83)

a
and the equilibrium angle is

o = cos™! (-2-2-) . (10.84)

aw

b) If the mass makes small oscillations around the equilibrium point
0o, then we can describe the motion in terms of a sma]] parameter
¢ = 0 — 65. The equation of motion (10.82) becomes

aq'; + gsin (6 + ¢) — aw? cos (6o + 4)sin (6o + ¢) = 0. (10.85)

Using standard trigonometric identities, the small angle approximatiops
sing ~ ¢ and cos¢d = 1, and our solution for B0 (10.84), it ;s ea.syO:;lo

show that
. gz
¢+w2 (1 - —-—) $=0.

a’wt

(10.86)
This has the general solution

¢ = Acos Ut + BsinQt, (10~87)
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Solution 3.10. First we choose units such th?.t k= 1. In the orbity)
ground state, the orbital angular momentum 18 Z€ro, 0 the relevans

part of the Hamiltonian is

H = (aS; +8S;) B+ 51 Ss. (12.131)

Let us choose the z-axis to be parallel to the uniform magnetic field,
B = Bz. Then

1 _ -
H = (a$; +BS5:)B+J [51:;52: = '2'(51+52 + 55 S;)] ,  (12.132)

where §* = S, £15,. For two particles with spin, we usually describe
the spin part of the wavefunction in either the basis of states given by
|51, Sz, 81z S2z), or |8, Sz, 51, 52) , where we define S =S, +S,. His
not diagonal in either of these bases, for general , B, and J. However,
since the proton and electron are spin 1/2 particles, we have only a
small number of basis vectors and we can solve the problem by brute
force. Let us choose the first basis suggested above, writing the basis
vectors as

) =111, W) =111, Kea) =11}, Tbad = (U1}, (12.133)

where the first arrow represents the S;;, and the second arrow repre-
sents the S,;.

If we form the 4 x 4 matrix (y; |H| ;) then, by definition, its eigen-
values are the energy eigenvalues and its eigenvectors are the eigenstates
of the system. We find that the matrix elements are given by:

(BB L 0 0 0 )
o Lpp_g 7 0
0 ; O O X . (12.134)
2 4
SR o PRy

L.et us de;note the four eigenvectors of this matrix as ¢, ¢, ¢ and b
S.mce H is in block-diagonal form, we can immediately write down WO
eigenvectors and their corresponding eigenvalies:



(12.135)
. B
|¢s) = |{1) with E, = —5la+p)+ % (12.136)

: B
|¢¢) = !TT) with E,l = +E(a+ﬁ) + :4’_,

To find the other two eigenenergies and eigenstates we need to di-
agonalize the submatrix

A=(€'(a—ﬂ)—%

J
7 —3(@

| o)

g) -1 ) (12.137)

The eigenvalues A of A are given by the quadratic equation
det [A — MI] = 0. Solving this equation for the two eigenvalues yields

J 1
=——+4 = 12.138
E.=-7+3k ( )
J 1
= —— == 12.139
where for simplicity we have defined
k=4/J%+ B2(a—B). (12.140)

We sketch the energy splittings as a function of B in Figure 12.3.
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b) Two of the eigenvectors, ¢s = ITT) and ¢y = []])| are give,
above. The other two are the normalized eigenvectors of the submatyjy,

A:

) = ﬁ { 1)+ -}- [k — B(ee = B) i1 )} ,  (12.141)
) = S {Fl-k+Ba-BNIM+IN}, (210

where
N=1+ -J—lg(k ~ B(a-f))’. (12.143)

We note that for B = 0, the eigenvectors of A reduce to the basis
|5, Sz, 51, S2), and for J = 0 they reduce to the basis |51, S2, 812, Saz).
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Solution 3.6. a) The Schrodinger equatiqn for the two.-cc;imﬁiozent
wavefunction ¥ of an electron at rest in a uniform magnetic nield 1

ov
g.uB . . — y (12063)
TS B ‘I’ = ‘th Bt

In this equation, the Bohr magneton is pp = eh/2m.c, Me 18 the elec-

: : in 18
tron mass, and g is the electron’s gyromagnetic ratio. The spif

. . e
S = ho /2, where o is the vector of Pauli spin matrices, presented her
for ease of reference;

= (P0)ia= (2 7)o e= o) e

If we write B = By then the eigenstates are

Ty(t) = ( 3 ) ™™ and ¥,(t) = ( (1) ) et (12.65)
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where Q = pgBy/k.

Initially the electron has its spin pointing in the z-direction. This

means that at ¢ = 0 the wavefunction ¥(t) must be an eigenstate of
the o, matrix, namely

U(t = 0) = % ( , ) . (12.66)

Alternatively we can write this in terms of the eigenstates (12.65). Then
for arbitrary time the wavefunction is given by

W= @O+ =25 (% ). 26

We can now calculate the probability of finding the spin in the z-
direction at time ¢ ;

(5) = poa=n(e ) (01) (%)

= g cos 2Q0t. (12.68)

We can also find the other components of {S(t)):
(S,) = gsin 20t and (S;) =0. (12.69)

So we see that the spin precesses around the magnetic field with an
angular precession frequency of 2(.

b) When an additional time-dependent magnetic field B, is applied,
it is tempting to try to use perturbation theory. However the question
makes no mention of B; being “weak.” Instead, we find an exact solu-
tion.

Our first step is to express the interaction term in a useful form:

3 BO %B1C_iwt
B-o= ( %Blei‘"t —Bo . (1270)

Now we substitute this into the Schrodinger equation (12.63) and look
for two solutions of the form

¥(t) = ( e ) . (12.71)

b e‘w.t



. motivatea as 10UOwWs. ¥¥t EE 8L Llal The
gxifti?:ﬁa;itb;ave a simple exponential time.dependex%c?,
Schrédinger equation couples the. two components in a non'tnv;al
dependent way. However the time dependence of the interqc
simply that of an exponential, and. we can 1.1ope tofind a sol}1t10n Which
is some combination of exponentials of different f.requenc1es. In faqy
this turns out to be the case, as we will see. If v:re insert our would.he
wavefunction (12.71) into the Schrédinger equation (12.63), we obtaiy

the following linear equations in a and b:

LB ( B, eWatg + _;_ B, ei(wb-w)t b) = —hw, giwat a, (1 9 72)

Wavye,
a8 the

» bime,
tion i

KB (%B1ei(“’°+“’)ta - Boeimtb) = —hupe . (12‘73)

Our first condition is that within each equation, the time depen.
dence of all the terms should be the same, which requires

Wp — We = W. (12.74)

Before we derive the other conditions, we note that we can set a = 1
without loss of generality. Further, for sake of clarity let us define f =
paB1/2h After we cancel the common exponential time dependence,
our equations now reduce to the simple form

—w, =0+ Bb, (12.75)
—wp = -0+ EZ— (12.76)

If we combine these with equation (12.74), we obtain a quadratic equa-
tion for b:

wb—w¢=w=29+ﬂ(b—%), (12.77)
or equivalently,
b’-b(ﬁ_ﬁ 1= 12.78)
55 )-1=0 (

We can solve this to find the two possible values of b, and then, fror™

equations (12.7 :
nents: (1275) and (12.76), obtain the frequencies of the comP®

by=¥=20 A (12.79)
26 B’
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Ya =—5 F4, and (12.80)
+ _ w
“=3FA4, (12.81)

where we have defined

A= \/ﬂ’ + (g - Q)z. (12.82)

The unnormalized eigenvectors of the hamiltonian (12.63) with B =
B, + B, are then

eiw'," t e,;w;t
b+eiw;|.t and ( b_ei”la_t ) . (12.83)

Initially we have (S,) = +4/2, or

U(t=0) = ( X ) . (12.84)

At time ¢ this will have evolved into a linear superposition of the eigen-
vectors (12.83):

eiwit eiw{t
¥(t) =p ( b gt ) +q ( g ) , (12.85)

for some constants p and ¢. Our initial condition (12.84) gives us p+q =
1, and pby + gb_ = 0. (Note that since ¥ is normalized at ¢ =0, it
remains normalized for all time.) These can be solved to give

Bb_ _ Bby 12.86

After a time ¢, the probability that the electron is in a state with
(S;) = —#/2 is the modulus squared of the lower component of ¥(t),

2 |Bbb,

| 2A

2
_ .8 (12.87)
= Z—;sm At.

N ]

P(t) = |pbye™it +qbe™

g 2
I Ot _ e—:AtI




134 CHAPTER 12. QUANTUM MECHANICS

If the oscillating magnetic field has an angular frequency w = 20) then j4
is “at resonance” and P(t) = sin® ft. This precession of the expectatioy

value of the spin with angular frequency 26 is called Rabi Precession,
and 2 is called the Rabi flopping frequency.



Solution:

a) The scattering amplitude in the first Born approximation is given by

= o 2m(2m)%/? B
fOEE) = _——~4(7rhg /d3ye WK -RTY (i) (0.1)
We have . .

k= é,k, k' = k(é* cos 0 + &,sinf cos ¢ + é,sin §sin ¢) (0.2)

Plugging in the potential and evaluating the integral over y gives

won 2m(2m 3/2(): ikbsin 0 sin —ikbsin 0sin
f(l)(k ,k) = Elwr_32 (ezkbsmas ¢ +e kbsin 0 ¢) (03)
3/2

= - -@C—%—:—i—)—— cos(kbsin 0 sin ¢) (0.4)

b) The differential cross section can be calculated from the scattering amplitude by

do 9
2,2
- @ 7;;4 8ﬂ-'cos(kb sin fsin ¢)|? (0.5)

c) The total cross section is given by

oo = [d21110,6) 1

2.2 ; 7 yals
- 2 7;487 /; d8singd [ do|cos(kbeosb cos )’
J ¢
2282
- a"hl—fﬂ/o d&sinﬁ(l + WJo(zkaine))
_ a?m?8n? sin(2bk)

(0.6)
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A particle in a spherically symmetrical potential is known to be in an eigenstate of L?
and L, with eigenvalues A2I(I + 1) and mh, respectively, denoted by |lm). L is the angular
momentum operator, whose components obey the usual commutation algebra. Prove that
the expectation values involving L, and L, obey

(L = (1) =0, (2 = (1 = L=

in the eigenstate |Im).
Solution: Using [L;, L;] = the;jx Ly, we evaluate (henceforth setting h = 1)

(L:zz - L?,) =([L:|:a Lz]2 - [Lw Lzlz) =2m(L.L.L, — LyLzLy) —m? (LZ: - L?;) - (L:Lzsz - LyLZLv‘)
=2m(L,L,L, — LyL,Ly,) — m*(L% — L?)
—(L.L,[L,,L;) + mL.L,L; — [Ly,L,\L.L, — mL,L,L,)
=m{L,L,Ly — LyL,L,) — m*(L% — L2
=m(L,[L., L) + mL% — [L,, L.}L, — mLﬁ) —m2(L2 - Lz) =0.
Thus (restoring k)
L2—L2%) l(l+1)—m?
2 - 2
The other identities are also easily obtained:

22y = (12 = & 3

zn(Lz) = (EL'@, Lzs) = '-"n(Ly _— LV) = O,

and similarly for {L,).




9. The matrix M = (M., M,, M.) represents an angular momentum matrix
pecause of the commutation rules. It is evident that the matrices d ;,
represent irreducible representations; rather they represent several ilzexs\)l-
cible representations.

If a state with spin J is represented, M has (2J 4 1) eigenvalues, ranging
in integral steps from +J to —J, each appearing once. Hence t’,here are
no states of spin greater than 2, only one of spin 2, and eight of spin 3. One of
the 28 entries of 41 is accounted for by the J = 2 state; there are, therefore
97 representations of J = 1. Similarly, there are (56 — 8) = 48 representa-
tions of J = $ and 42 of J = 0.

Each eigenvalue of M® corresponding to spin J has value J(J +1); to

each representation there are (2J -+ 1) such values. We then construct the
following table:

Number of Number of
J JJ + 1) (2J + 1) \ representations\ entries in M? \
2 6 5 ‘ 1 5 j
3 as, 4 8 32

48

(X
[
N

\
| \
: : 3 T v
I
|

0 0 1 42 \ 42

153



16. In the region z > 0, 4J» obeys the same differential equation as the two-
gsided harmonic oscillator; however, the only acceptable solutions are those
that vanish at the origin. Therefore, the eigenvalues are those of the ordinary
harmonic oscillator belonging to wave functions of odd parity. Now the
parity of the S.H.O. wave functions alternates with increasing », starting
with an even-parity ground state. Hence,

E=(4n—{;3)hm with o =0,1,...






