
PHYSICS 221A

Practice Final

Real Exam: Tuesday December 11th, 2012, 8am - 11am, PAB 2-434

• Please write clearly

• Print your name on every page used, including this one;

• Make clear which question and which part you are answering on each page.

• No core-dumps please !

• No books, notes, computers, or calculators are allowed during the exam;

• Please turn off all electronic devices.

• All parts of questions, a),b)c) etc., carry a weight of 5 points unless otherwise indicated.

question possible points achieved points

1. 20
2. 20
3. 20
4. 15
5. 20

Total 95



Some possibly useful formulas

• The angular momentum algebra is given by [J1, J2] = ih̄J3, and cyclic permutations. The
ladder operators, defined by J± ≡ J1 ± iJ2, act as follows,

J±|j,m〉 = h̄
√
j(j + 1)−m(m± 1) |j,m± 1〉 (0.1)

where the states are properly normalized by 〈j′,m′|j,m〉 = δj,j′δm,m′ .

• CBH-formula
eABe−A = exp(AdA)B (0.2)

where AdX · = [X, ·].

• The Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(0.3)

• harmonic oscillator

a =
1√

2mωh̄

(
mωX + i P

)
a† =

1√
2mωh̄

(
mωX − i P

)
(0.4)
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QUESTION 1: [20 points]

A system of three (non-identical) spin 1/2 particles, whose spin operators are ~S1, ~S2, ~S3,
is governed by the Hamiltonian,

H =
2A

h̄2
~S1 · ~S2 +

2B

h̄2
~S3 · (~S1 + ~S2)

where A and B are real constants.

a) [5pts] Rewrite the Hamiltonian such that in only involves squares of ~Si or squares of sums

of ~Si’s.

b) [15pts] Calculate the energy levels and their respective degeneracies.

Note: In part b) you can quote results of representation theory and addition
of angular momentum
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QUESTION 2: [20 points]

A coherent state for a single harmonic oscillator is given by

| c〉coh = e
−|c|2

2 eca
† | 0〉 (0.5)

Where | 0〉 is the ground state of the harmonic oscillator.

a) Show that | c〉coh is normalized

b) Are there any values of c1, c2 for which two coherent states are orthogonal ? (Back up
your answer with an argument or a calculation).

c) Show that | c〉coh is an eigenstate of the lowering operator a and calculate the eigenvalue.

d) Show that

|〈n | c〉coh|2 =
An

n!
e−B (0.6)

and determine A and B. Here

| n〉 =
1√
n!

(a†)n | 0〉 (0.7)

is the n-th excited state of the harmonic oscillator.
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QUESTION 3: [20 points]

Consider a one dimensional particle moving in a potential with Hamiltonian

H =
p2

2m
+ V (x) (0.8)

Assume that the Hamiltonian has a discrete non-degenerate spectrum (i.e. there are only
bound states)

H | n〉 = En | n〉, En 6= Em if n 6= m (0.9)

a) Show that

[[x,H], x] =
h̄2

m
(0.10)

b) Show that the following ”sum rule” holds (it’s called that because you sum over all states).

∑
m

(Em − En)
∣∣∣〈n | x | m〉∣∣∣2 =

h̄2

2m
(0.11)

Hint: insert a complete set of states in the appropriate place.

c) Calculate
〈n | x | m〉 (0.12)

for the harmonic oscillator

d) Verify the sum rule for the harmonic oscillator
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QUESTION 4: [15 points]

The states | ψ(t)〉 and | φ(t)〉 both satisfy the Schrödinger equation

ih̄
∂

∂t
| Ψ(t)〉 = H | Ψ(t)〉 (0.13)

Assume that the Hamiltonian H does not have any explicit time dependence. For a),b) work
in the Schrödinger picture.

a) Show that any | Ψ(t)〉 which solves (0.13) can be expressed as follows:

| Ψ(t)〉 = e−
i
h̄
Ht | ψ(0)〉 (0.14)

b) At time t = 0 the two states are related by

| ψ(0)〉 = F | φ(0)〉 (0.15)

What is the condition on the operator F that this relation holds also for later times, i.e.

| ψ(t)〉 = F | φ(t)〉 (0.16)

c) If you transform the operator F from the Schrödinger picture to the Heisenberg picture,
will it be time dependent ? Back up your answer by a calculation.
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QUESTION 5: [20 points]

Consider the one dimensional periodic Ising chain with 3 sites

H = − j

h̄2

(
Sz1S

z
2 + Sz2S

z
3 + Sz3S

z
1

)
+
b

h̄

(
Sz1 + Sz2 + Sz3

)
(0.17)

Where ~Si is the spin 1/2 operator of the i-th site (treat the spins as distinguishable).

a) Find a normalized basis of eigenstates of H.

b) Find the spectrum of H and its degeneracy

c) For b 6= 0 calculate the partition function

Z = tr(e−βH) (0.18)

d) Calculate the thermal expectation value of Sz1 + Sz2 + Sz3 for the case b = 0

< Sz1 + Sz2 + Sz3 >= tr
(
(Sz1 + Sz2 + Sz3)e−βH

)
|b=0 (0.19)
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QUESTION 1: [20 points]

A system of three (non-identical) spin 1/2 particles, whose spin operators are ~S1, ~S2, ~S3,
is governed by the Hamiltonian,

H =
2A

h̄2
~S1 · ~S2 +

2B

h̄2
~S3 · (~S1 + ~S2)

where A and B are real constants.

a) [5pts] Rewrite the Hamiltonian such that in only involves squares of ~Si or squares of sums

of ~Si’s.

b) [15pts] Calculate the energy levels and their respective degeneracies.

Note: In part b) you can quote results of representation theory and addition
of angular momentum

Solution:

a) The Hamiltonian can be expressed as follows:

H =
2A

h̄2
~S1 · ~S2 +

2B

h̄2
~S3 · (~S1 + ~S2)

=
A

h̄2 ((S1 + S2)2 − S2
1 − S2

2) +
B

h̄2 ((S1 + S2 + S3)2 − S2
3 − (S1 + S2)2) (0.5)

b) Following the rule of adding angular momentum, the 8 = 2× 2× 2 states of the three
fold tensor product decompose as follows, using the rules of addition of momentum.

D
(1/2)
1 ⊗D(1/2)

2 ⊗D(1/2)
3 = (D

(0)
12 ⊕D

(1)
12 )⊗D(1/2)

3

= D
(1/2)
123 ⊕ 2D

(1/2)
123 ⊕D

(3/2)
123 (0.6)

the subscript of D refers to the particle contents of the representation, where we first added
the spin of particle 1 and 2 and then afterwards the spin of particle 3. Note that the first
D

(1/2)
123 and the second D

(1/2)
123 differ, the first one has S1 + S2 = 0, whereas the second has

S1 + S2 = 1.

With this decomposition, we can read off the eigenvalues of H.

E1 =
A

h̄2 (0− 3/4− 3/4)h̄2 +
B

h̄2 (3/4− 3/4− 0)h̄2 = −3A

2
; S12 = 0 S123 =

1

2

E2 =
A

h̄2 (2− 3/4− 3/4)h̄2 +
B

h̄2 (3/4− 3/4− 2)h̄2 =
A

2
− 2B; S12 = 1 S123 =

1

2

E3 =
A

h̄2 (2− 3/4− 3/4)h̄2 +
B

h̄2 (15/4− 3/4− 2)h̄2 =
A

2
+B; S12 = 1 S123 =

3

2
(0.7)
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So the spectrum and degeneracies are

E deg.
−3A

2
2

A
2
− 2B 2

A
2

+B 4

(0.8)
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QUESTION 2: [20 points]

A coherent state for a single harmonic oscillator is given by

| c〉coh = e
−|c|2

2 eca
† | 0〉 (0.9)

Where | 0〉 is the ground state of the harmonic oscillator.

a) Show that | c〉coh is normalized

b) Are there any values of c1, c2 for which two coherent states are orthogonal ? (Back up
your answer with an argument or a calculation).

c) Show that | c〉coh is an eigenstate of the lowering operator a and calculate the eigenvalue.

d) Show that

|〈n | c〉coh|2 =
An

n!
e−B (0.10)

and determine A and B. Here

| n〉 =
1√
n!

(a†)n | 0〉 (0.11)

is the n-th excited state of the harmonic oscillator.

Solution:

a) One has

|| | c〉coh||2 = coh〈c | c〉coh

= e−|c|
2〈0 | ec∗aeca† | 0〉

= e−|c|
2〈0 | eca†ec∗ae|c|2[a,a†] | 0〉

= e−|c|
2〈0 | e|c|2 | 0〉

= 1 (0.12)

In the third line we have used

eca | 0〉 =| 0〉, 〈0 | eca† = 〈0 | (0.13)

and the BCH formula
eXeY = eX+Y e

1
2

[X,Y ] (0.14)

which holds if [X, Y ] is a c-number. It follows

eXeY = eY eXe[X,Y ] (0.15)
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b) One has

coh〈c1 | c2〉coh = e−
1
2
|c1|2− 1

2
|c2|2〈0 | ec∗1aec2a† | 0〉

= e〈0 | ec2a†ec∗1aec2c∗1[a,a†] | 0〉
= e−

1
2
|c1|2− 1

2
|c2|2−c2c∗1〈0 | 0〉

= e−
1
2
|c1|2− 1

2
|c2|2−c2c∗1 (0.16)

The exponent is never zero, unless one takes the limit |c1| or |c2| going to infinity, hence the
coherent states for to values of c are never orthogonal.

c) We can use the BCH formula

eABe−A = exp(AdA)B (0.17)

with A = −ca† and B = a. Using the fact that [a†, a] = −1 is a c-number and all higher
commutators in exp(Ad) vanish one gets

e−ca
†
aeca

†
= a+ [−ca†, a]

= a+ c (0.18)

And hence has

aeca
†

= eca
†
a+ ceca

† | 0〉 (0.19)

Using this one gets

a | c〉coh = e
−|c|2

2 aeca
† | 0〉

= ce
−|c|2

2 eca
† | 0〉+ e

−|c|2
2 eca

†
a | 0〉

= ce
−|c|2

2 eca
† | 0〉

= c | c〉coh (0.20)

The eigenvalue is c.

d) One uses that

〈n |= 1√
n!
〈0 | an (0.21)

Hence

〈n || c〉coh =
1√
n!
〈0 | an | c〉coh

=
1√
n!
cn〈0 | c〉coh

=
1√
n!
cne

−|c|2
2 (0.22)
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For the absolute value squared one obtains

|〈n | c〉coh|2 =
|c|2n

n!
e−|c|

2

(0.23)

and hence
A = |c|2, B = |c|2 (0.24)
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QUESTION 3: [20 points]

Consider a one dimensional particle moving in a potential with Hamiltonian

H =
p2

2m
+ V (x) (0.25)

Assume that the Hamiltonian has a discrete non-degenerate spectrum (i.e. there are only
bound states)

H | n〉 = En | n〉, En 6= Em if n 6= m (0.26)

a) Show that

[[x,H], x] =
h̄2

m
(0.27)

b) Show that ∑
m

(Em − En)
∣∣∣〈n | x | m〉∣∣∣2 =

h̄2

2m
(0.28)

Hint: insert a complete set of states in the appropriate place.

c) Calculate
〈n | x | m〉 (0.29)

for the harmonic oscillator

d) Verify the sum rule for the harmonic oscillator

Solution:

a) We first calculate the commutator

[x,H] =
1

2m
[x, p2] =

1

2m
([x, p]p+ p[x, p]) =

ih̄

m
p (0.30)

and from this the double commutator

[[x,H], x] =
ih̄

m
[p, x] =

h̄2

m
(0.31)

b) The expectation value of the commutator for a eigen state | n〉 is then given by

〈n | [[x,H], x] | n〉 =
h̄2

m
〈n | n〉 =

h̄2

m
(0.32)
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Next insert a complete set of states
∑
n′ | n′〉〈n′ | in the outer commutator

〈n | [[x,H], x] | n〉 =
∑
n′

(
〈n | [x,H] | n′〉〈n′ | x | n〉 − 〈n | x | n′〉〈n′ | [x,H] | n〉

)
=

∑
n′

(
(En′ − En)|〈n|x|n′〉|2 − (En − En′)|〈n|x|n′〉|2

)
= 2

∑
n′

(
(En′ − En)|〈n|x|n′〉|2 (0.33)

Equating (0.30) and (0.31) and dividing by 2 proves the sum rule.

c) One has

a =

√
mω

2h̄
x+

i

2mωh̄
p, a† =

√
mω

2h̄
x− i

2mωh̄
p (0.34)

and

| n〉 =
1√
n!

(a†)n | 0〉 (0.35)

Hence

〈n | x | n′〉 =

√
h̄

2mω

1√
n!

1√
n′!
〈0 | an(a+ a†)(a†)n

′ | 0〉

=

√
h̄

2mω

1√
n!

1√
n′!

(
〈0 | an+1(a†)n

′ | 0〉+
(
〈0 | an(a†)n

′+1 | 0〉
)

=

√
h̄

2mω

1√
n!

1√
n′!

(
(n+ 1)!δn+1,n′ + (n′ + 1)!δn,n′+1

)

=

√
h̄

2mω

( (n+ 1)!√
n!(n+ 1)!

δn+1,n′ +
(n′ + 1)!√
(n′ + 1)!n′!

δn,n′+1

)

=

√
h̄

2mω

(√
n+ 1δn+1,n′ +

√
n′ + 1δn,n′+1

)
(0.36)

When one squares the matrix element the cross terms vanish since both conditions in the
Kronecker deltas cannot be satisfied at the same time hence using

En′ − En = h̄ω(n′ − n) (0.37)

one gets for (0.31):

2h̄ω
∑
n′

(n′ − n)
h̄

2mω

(
(n+ 1)δn′,n+1 + nδn′+1,n

)
=

h̄2

m
(n+ 1− n)

=
h̄2

m
(0.38)

Hence the sum rule holds for the harmonic oscillator.
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QUESTION 4: [15 points]

The states | ψ(t)〉 and | φ(t)〉 both satisfy the Schrödinger equation

ih̄
∂

∂t
| Ψ(t)〉 = H | Ψ(t)〉 (0.39)

Assume that the Hamiltonian H does not have any explicit time dependence. For a),b) work
in the Schrödinger picture.

a) Show that any | Ψ(t)〉 which solves (0.37) can be expressed as follows:

| Ψ(t)〉 = e−
i
h̄
Ht | Ψ(0)〉 (0.40)

b) At time t = 0 the two states are related by

| ψ(0)〉 = F | φ(0)〉 (0.41)

Where F is in the Schrd̈ingier picture and does not have any explicit time dependence. What
is the condition on the operator F that this relation holds also for later times, i.e.

| ψ(t)〉 = F | φ(t)〉 (0.42)

c) If you transform the operator F from the Schrödinger picture to the Heisenberg picture,
will it be time dependent ? Give an argument for your yes/no/depends answer.

Solution:

a) Since H is not time dependent it commutes with itself at all times. Therefore

ih̄
∂

∂t
| Ψ(t)〉 = ih̄

∂

∂t
e−

i
h̄
Ht | Ψ(0)〉

= He−
i
h̄
Ht | Ψ(0)〉

= H | Ψ(t)〉 (0.43)

b) We start by multiplying
| ψ(0)〉 = F | φ(0)〉 (0.44)

from the left by e−
i
h̄
Ht and inserting 1 in between F and | φ(0)〉.

e−
i
h̄
Ht | ψ(0)〉 = e−

i
h̄
HtFe+ i

h̄
Hte−

i
h̄
Ht | φ(0)〉 (0.45)
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becomes

| ψ(t)〉 = F (t) | φ(t)〉 (0.46)

with
| F (t)〉 = e−

i
h̄
HtFe+ i

h̄
Ht (0.47)

This expression is equal to F if
[H,F ] = 0 (0.48)

i.e. the operator F commutes with H and hence is a conserved quantity.

c) The operator FH in the Heisenberg picture is defined to be

| FH〉 = e+ i
h̄
HtFe−

i
h̄
Ht (0.49)

Hence if [F,H] = 0 the operator FH = F and is time independent.
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QUESTION 5: [20 points]

Consider the one dimensional periodic Ising chain with 3 sites

H = − j

h̄2

(
Sz1S

z
2 + Sz2S

z
3 + Sz3S

z
1

)
+
b

h̄

(
Sz1 + Sz2 + Sz3

)
(0.50)

Where ~Si is the spin 1/2 operator of the i-th site (treat the spins as distinguishable).

a) Find a normalized basis of eigenstates of H.

b) Find the spectrum of H and its degeneracy

c) For b 6= 0 calculate the partition function

Z = tr(e−βH) (0.51)

d) Calculate the thermal expectation value of Sz1 + Sz2 + Sz3 for the case b = 0

< Sz1 + Sz2 + Sz3 >= tr
(
(Sz1 + Sz2 + Sz3)e−βH

)
|b=0 (0.52)

Solution:

a) Use the basis of eigenstates of Sz = h̄
2
σ3 with

Sz | s = ±1〉 = ± h̄
2
| s = ±1〉 (0.53)

Since [Szi , S
z
j ] = 0 for i, j = 1, 2, 3 the tensor product of the | ±〉 are eigen states of H

| s1, s2, s3〉 =| s1〉⊗ | s2〉⊗ | s3〉, s1,2,3 = ±1 (0.54)

b) The eigenvalues of H are

E{s} = −j 1

4
(s1s2 + s2s3 + s3s1) + b

1

2
(s1 + s2 + s3) (0.55)

The values can easily be tabulated

{s} s1s2 + s2s3 + s3s1 (s1 + s2 + s3) E{s}
+ + + 3 3 −3j

4
+ 3b

2

+ +− −1 1 j
4

+ b
2

+−+ −1 1 j
4

+ b
2

−+ + −1 1 j
4

+ b
2

−−+ −1 −1 j
4
− b

2

−+− −1 −1 j
4
− b

2

+−− −1 −1 j
4
− b

2

−−− +3 −3 −3j
4
− 3b

2

(0.56)
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Hence there are four possible eigenvalues −3j
4

+ 3b
2

with degeneracy 1, j
4

+ b
2

with degeneracy

3, j
4
− b

2
with degeneracy 3 and −3j

4
+ 3b

2
with degeneracy 1.

c) The trace is performed as the sum over the normalized eigenstates

Z = tre−βH

=
∑
{s}
〈s1, s2, s3 | e−βH | s1, s2, s3〉

= eβ
3j
4
−β 3b

2 + 3e−β
j
4
−β b

2 + 3e−β
j
4

+β b
2 + eβ

3j
4

+β 3b
2 (0.57)

d) Note that a derivative of b of Z inserts the operator Sz1 + Sz2 + Sz3 into the trace. Z is
symmetric under b→ −b and hence only even powers appear in Z. Therefore the expectation
value vanishes. One can of course compute this directly.
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PHYSICS 221B

Final Exam – Winter 2013

Tuesday March 19th, 2013, at 3pm - 6pm

• Please write clearly

• Print your name on every page used, including this one;

• Make clear which question and which part you are answering on each page.

• No core-dumps please !

• No books, notes, computers, or calculators are allowed during the exam;

• Please turn off all electronic devices.

• Problems are not in order of difficulty.

Good Luck !!

question possible points achieved points

1. 20
2. 15
3. 15
4. 20
5. 15

Total 85



Some possibly useful formulas

1. Harmonic oscillator for a Hamiltonian

H =
p2

2m
+

1

2
mω2x2 = h̄ω(a†a+

1

2
) (0.1)

with

a =
1√

2mh̄ω
(mωx+ ip) [a, a†] = 1 (0.2)

2. The angular momentum algebra is [J1, J2] = ih̄J3, and two cyclic permutations thereof.
The corresponding ladder operators are defined to be J± = J1 ± iJ2, and act by

J±|j,m〉 = h̄
√
j(j + 1)−m(m± 1) |j,m± 1〉 (0.3)

3. spherical Bessel functions jl

j0(x) =
sinx

x
(0.4)

j1(x) =
sinx

x2
− cosx

x
(0.5)

4. Spherial harmonics

Y 0
0 =

1√
4π

(0.6)

Y 0
1 =

√
3

4π
cos θ (0.7)

Y ±11 = ∓
√

3

8π
sin θe±iφ (0.8)

5. Scattering formula

eik·r =
∞∑
`=0

i`(2`+ 1)j`(kr)P`(cos θ)

ψk(r) =
1

(2π)3/2

[
eik·r + f(k′,k)

eikr

r

]

f(k′,k) =
∞∑
`=0

(2`+ 1)
e2iδ` − 1

2ik
P`(cos θ) (0.9)
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6. phase shift for spherical symmetric potential, 1st Born approximation

δl = −k
∫ ∞
0

drr2U(r)(jl(kr))
2 (0.10)

7. Possible useful integrals: ∫ 2π

0
dφ eia sinφ = 2πJ0(|a|) (0.11)∫ π

0
dθ sin θJ0(b sin θ) =

2 sin b

b
(0.12)

where J0 is the Bessel function of the first kind.
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QUESTION 1: [20 points]

We consider the Hamiltonian of a rigid rotator given by

H0 =
~L2

2I

Where I is the moment of inertia.
It is assumed that the rigid rotator has a magnetic moment and is placed in an uniform

electric field in the z-direction. Averaging over the radial dependence this amounts to adding
a perturbation

H ′ = −εµ cos θ

(i.e. For the problem you can neglect any radial dependence and treat the problem as one
which only depends on the angular coordinates θ and φ).

a) Find the spectrum and degeneracies of H0.

b) Using the following relation

cos θ Y m
l =

√√√√ (l + 1)2 −m2

(2l + 1)(2l + 3)
Y m
l+1 +

√√√√ l2 −m2

(2l + 1)(2l − 1)
Y m
l−1

where Y m
l are the spherical harmonics in standard spherical coordinates. Calculate the

following matrix elements

〈lm| cos θ|l′m′〉

Hint: very few of the matrix elements are nonzero.

c) Using the results of b) argue that: First, the first order contribution in perturbation theory
to the energy of the state | lm〉 vanishes. Second, even though the spectrum is degenerate
one can apply second order perturbation theory for the energy of the state | lm〉.

d) Calculate the second oder contribution to the shift in the energy for the state | lm〉.

4



QUESTION 2: [15 points]

Consider the scattering of a spinless particle of mass m from a diatomic molecule. The
incoming momentum is ~p = h̄kêz Assume that the molecule is much heavier than the scat-
tering particle and that there is no recoil. The two atoms in the molecule are aligned along
the y-axis and localized at y = b and y = −b. The potential the particle feels in the presence
of the molecule can be modeled by delta functions:

V (~x) = α
(
δ(y − b)δ(x)δ(z) + δ(y + b)δ(x)δ(z)

)
a) Calculate the scattering amplitude in the first Born approximation.

b) Calculate the differential cross section from a) (Express the result in terms of the scat-
tering angles).

c) Calculate the total cross section. You can either do the integrals exactly or calculate
the total cross section to order k2 (inclusive) in the small k limit.

5



QUESTION 3: [15 points]

A two state system is described by the following Hamiltonian

H = H0 + V (t)

With a time independent H0 and a two orthonormal basis vectors satisfying

H0 | 1〉 = ε1 | 1〉, H0 | 2〉 = ε2 | 2〉

The perturbation satisfies

V (t) | 1〉 = h̄ω1e
−iωt | 2〉, V (t) | 2〉 = h̄ω1e

iωt | 1〉

a) Find the eigenvalues and eigenvectors of H

b) Solve the time dependent Schrödinger equation for t > 0 for a state with initial condition

| ψ(t = 0)〉 =| 1〉

c) Calculate the probability to find the system at time t > 0 in the state | 2〉.

6



QUESTION 4: [20 points]

A particle is scattered by a spherical symmetric potential at energies which are low enough
so that only the phase shifts δ0 and δ1 are nonzero. (For part a)-c) treat δ0, δ1 as given).

a) Show that the differential cross section is of the form

dσ

dΩ
= A+B cos θ + C cos2 θ

b) Determine A,B,C in terms of the phase shifts

c) Calculate the total cross section in terms of A,B,C.

d) Consider a very weak and short range potential (which behaves not worse than 1/r at
the origin). Estimate the k dependence of δ0 and δ1 in the limit k → 0.

7



QUESTION 5: [15 points]

Consider the one dimensional harmonic oscillator with Hamiltonian

H0 =
p2

2m
+

1

2
m ω2x2

At time t > 0 the following perturbation is turned on

H ′(t) = α x e−
t
τ

a) If at time t < 0 the system is in its ground state (of H0) calculate to first order in time
dependent perturbation theory the probability that the system is found at time t > 0 in the
first excited state.

b) If at time t < 0 the system is in the first excited state (of H0) calculate to first order in
time dependent perturbation theory the probability that the system is found at time t > 0
in the ground state.

c) For the harmonic oscillator with Hamiltonian H0 above, give an example a of an adiabatic
change and a sudden change. What is the time scale which is used to decide whether an
adiabatic or sudden change approximation is appropriate ?

If the system is in the ground state at time t = 0 describe (without calculation) how the
state evolves at later times for the two cases.

8
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Some possibly useful formulas

• Electric and magnetic fields:

~E = −~∇φ− ∂ ~A

∂t
, ~B = ~∇× ~A (0.1)

• Harmonic oscillator for a Hamiltonian

H =
p2

2m
+

1

2
mω2x2 = h̄ω(a†a+

1

2
) (0.2)

with

a =
1√

2mh̄ω
(mωx+ ip) [a, a†] = 1 (0.3)

• The angular momentum algebra is [J1, J2] = ih̄J3, and two cyclic permutations thereof.
The corresponding ladder operators are defined to be J± = J1 ± iJ2, and act by

J±|j,m〉 = h̄
√
j(j + 1)−m(m± 1) |j,m± 1〉 (0.4)

• Radial wave function Rnl for Hydrogen like atom with V (r) = −Ze2/r.

R10(r) =
(
Z

a0

)3/2

2e
−Zr

a0 (0.5)

R20(r) =
(
Z

2a0

)3/2

(2− Zr

a0
)e
− Zr

2a0 (0.6)

R21(r) =
(
Z

2a0

)3/2 Zr√
3a0

e
− Zr

2a0 (0.7)

• Bohr radius

a0 =
h̄2

mee2
(0.8)

• Spherial harmonics

Y 0
0 =

1√
4π

(0.9)

Y 0
1 =

√
3

4π
cos θ (0.10)

Y ±11 = ∓
√

3

8π
sin θe±iφ (0.11)

2



• spherical Bessel functions jl

j0(x) =
sinx

x
(0.12)

j1(x) =
sinx

x2
− cosx

x
(0.13)

• Legendre polynomials Pl.

P0(x) = 1, P1(x) = x (0.14)

• The Laplacian in spherical coordinates

∆ =
∂2

∂r2
+

2

r

∂

∂r
−

~L2

h̄2r2
(0.15)

• Potentially useful integrals ∫ ∞
0

dx xne−ax = a−1−nΓ(n+ 1) (0.16)∫
R3
d3x

ei~x·~y

|~x|
=

4π

|~y|2
(0.17)∫ ∞

−∞
dx

1

1 + x2
= π (0.18)

3



QUESTION 1: [15+5 points]

A relativistic particle in one dimension with mass m is subject to a harmonic oscillator
potential, and governed by the following Hamiltonian,

Hc =
√
m2c4 + p2c2 −mc2 +

1

2
mω2x2 (0.19)

where [x, p] = ih̄.

a) Show that n the limit c→∞, the Hamiltonian Hc reduces to the standard non-relativistic
harmonic oscillator Hamiltonian (which will be denoted here by H∞).

b) Using perturbation theory in power of 1/c2, compute the leading relativistic correction
to the ground state energy of H∞.

c) For the general case of finite c show that, in a basis where p is diagonal, the spectrum
of Hc may be obtained by solving a Schrödinger-like differential equation.

4



QUESTION 2: [15 points]

An electron scatters off a hydrogen atom in the ground state. Ignore the effects due to
the spin and the indistinguishability of the two electrons. The potential seen by the scattered
electron is then given by,

V (r) = −α
r

+ α
∫
d3y

ρ(~y)

|~x− ~y|
(0.20)

where r = |~x|, α is the fine structure constant, and ρ(~x) is the normalized probability density
of the bound electron.

a) Calculate the scattering amplitude f in the Born approximation, as a function of the
Fourier transform of ρ(~x).

b) Evaluate the differential cross section as a function of q = k sin(θ/2) for

ρ(~x) =
1

πa3
e−2r/a (0.21)

corresponding to the probability density in the ground state of the Hydrogen atom, where
a = h̄/(mcα) is the Bohr radius.

c) Show that the total cross section is finite in the limit k → 0.

5



QUESTION 3: [10 points]

a) Verify that, outside the range of a short-range potential, the wave functions

us(r, θ) =
1

r
eikr

up(r, θ) = (
1

r
+

i

kr2
)eikr cos θ (0.22)

represent outgoing s- and p-waves respectively.

b) A beam of particles represented by a plane wave with

φk(~r) =
1

(2π)
3
2

∞∑
l=0

il(2l + 1)jl(kr)Pl(cos θ) (0.23)

is scattered by an impenetrable sphere of radius R, where kR << 1. By considering only
s and p wave components in the scattered wave, show that, to order (kR)2, the differential
cross-section for scattering at an angle θ is of the form

dσ

dΩ
= A+B cos θ (0.24)

and compute A and B to order O(k2R2) included.

6



QUESTION 4: [15 points]

A hydrogen atom is located in a homogenous electric field (and vanishing magnetic field).

~E =

 0
0

Ez(t)

 , E(t) =
Bτ

πe

1

t2 + τ 2
(0.25)

Neglect spin and any fine structure corrections for the Hamiltonian of the hydrogen atom.

a) Determine the time dependent perturbation V (t) coming from the time dependent electric
field

b) At time t = −∞ the hydrogen atom is in its ground state. Calculate, to first order in
time dependent perturbation theory,the probability of finding the atom at the time t = ∞
in the 2p state.

c) At time t = −∞ the hydrogen atom is in its ground state. Calculate, to first order in
time dependent perturbation theory, the probability of finding the atom at the time t =∞
in the 2s state.

7



QUESTION 5: [20 points]

Consider the Hamiltonian for a ”spin top” with principal moments of inertia I1, I2, I3
with Hamiltonian

H =
1

2

(
J2
1

I1
+
J2
2

I2
+
J2
3

I3

)
(0.26)

Where
∑
J2
i has eigenvalues h̄2j(j + 1) with j = 0, 1

2
, 1, · · ·.

a) For the special case of a symmetric top, I = I1 = I2 6= I3, derive all the energy levels,
and their respective degeneracies.

b) A slightly asymmetric top has I1 = I + ∆ and I2 = I − ∆. and assume that |∆| � I,
and |∆| � |I − I3|. Compute the energy eigenvalue of the j = 0 state, up to first order in ∆
in perturbation theory.

c) Consider the three states with j = 1, does one have to use degenerate or non degenerate
perturbation theory to calculate the energy shift to first order in ∆ in perturbation theory
? Give an argument

d) Calculate energy shifts of the j = 1 states to first order in ∆.

8
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1. 20
2. 40
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Some possibly useful formulas

• The Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(0.1)

• Harmonic oscillator
[a, a†] = 1 (0.2)

a =
1√

2mωh̄

(
mωX + iP ), a† =

1√
2mωh̄

(
mωX − iP ), (0.3)

• Position and momentum
[X,P ] = ih̄ (0.4)
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QUESTION 1: Quick questions [20 points]

a) For a linear operator A how are the following expectation values related ? († denotes the
hermitian conjugate).

〈ψ1 | A | ψ2〉, 〈ψ2 | A† | ψ1〉 (0.5)

b) State the generalized Heisenberg uncertainty principle for two hermitian observables A,B.

c) For the harmonic oscillator the energy eigenstates are given by | n〉 = 1/
√
n!(a†)n | 0〉.

For which n does the matrix element

〈0 | x̂ | n〉 (0.6)

vanish ?

d) Which of these 2× 2 matrices could be density matrices of a 2 state system ?

(
2
3

0
0 2

3

)
,

(
1 1
1 0

)
,

(
1
3

1
−1 2

3

)
,

(
1 0
0 0

)
,

(
2
3

0
0 1

3

)
(0.7)

3



e) Which of the following operators is a possible observable ? (Here x̂ and p̂ are position
and momentum operator satisfying [x, p] = ih̄ and a are real constant).

1.) x̂p̂,

2.) (x̂+ iap̂)(x̂− iap̂),
3.) p2 + ax2

4.) eiap

4



- extra space -

5



QUESTION 2: [40 points]

Consider a physical system with a three dimensional Hilbert space spanned by the vectors

| u1〉 =

 1
0
0

 , | u2〉 =

 0
1
0

 , | u3〉 =

 0
0
1

 (0.8)

The Hamilton operator of the system is given by

H = h̄ω

 1 0 0
0 3 0
0 0 3

 (0.9)

Two additional observables are given by

A = a

 1 0 0
0 0 1
0 1 0

 , B = b

 0 1 0
1 0 0
0 0 1

 , (0.10)

At time t = 0 the system is in the following state:

| ψ(t = 0)〉 =
1√
2
| u1〉+

1

2
| u2〉+

1

2
| u3〉 (0.11)

a) At time t = 0 we measure the energy of the system. What are the possible values one
can obtain and related probabilities ? Calculate the expectation value and the variance of
the energy.

b) Instead of measuring the energy we measure the observable A. What are the possible
values one can obtain and what are the probabilities ? Determine the state of the system
after the measurement of A (for each possible result of the measurment).

c) Instead of measuring anything, the system in state (0.11) evolves from time t = 0 ac-
cording to the Schrödinger equation. Determine the state | ψ(t)〉 at time t and calculate the
expectation values for A and B at time t. How do they differ ?

d)
We now measure the observable A at time t. What are the possible values one can obtain

and the probabilities ? Same question if one measures B instead at time t.

6
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QUESTION 3: [40 points]

A finite dimensional lattice with periodic boundary conditions has a Hilbert space spanned
by | n〉, n = 1, 2, · · ·N , where

〈n|m〉 = δmn (0.12)

At the lattice is made periodic by the identification | N + 1〉 ≡| 1〉. The expectation values
of the Hamiltonian are given by

〈n | H | n〉 = r0

〈n | H | n+ 1〉 = r1e
iφ1

〈n | H | n+ 2〉 = r2e
iφ2

Where r0, r1, r2, φ1, φ2 are real.

a) Calculate the expectation values 〈n+ 1 | H | n〉 and 〈n+ 2 | H | n〉

b) Express the the Hamiltonian in term of the translation operator T which satisfies

T | n〉 =| n+ 1〉, T † | n〉 =| n− 1〉, (0.13)

c) Find the eigenstates and eigenvalues of H.

d) For the position operator X the following relation holds

X | n〉 = a n | n〉 (0.14)

where a is a called the lattice spacing. Show that X is hermitan and that it satisfies the
operator identity

T †XT = a+X (0.15)

10
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221A Practice Midterm Solution
Antonio Russo

October 31, 2013

1 Quick Questions

(1a) Hermitian Conjugate

〈ψ1| A |ψ2〉 = 〈ψ2| A† |ψ1〉

(1b) Heienberg Uncertainty

(∆φA)2(∆φB)2 ≥
1
4

∣∣∣〈[A, B]〉φ
∣∣∣2

(1c) Ladder Operators
Since x̂ ∼ a + a†, this term vanishes for n , 1.

(1d) Density Matrices
The first has trace of 4/3, so no. The second has trace 1, and is hermitian, but has a negative eigenvalue (so no). The
third is not hermitian (so no). The fourth is just a projector (so yes). The last has trace 1, is hermitian, and is positive
semi-definite (so yes).

(1e) Observable
Check if they are hermitian. For (1), because x̂ p̂ , p̂x̂, (1) is not an observable. The second and third are, while the
fourth is not (because of the i).

2

(2a) Energy at t = 0

〈E〉 =

[
1
√

2
〈u1| +

1
2
〈u2| +

1
2
〈u3|

]
H

[
1
√

2
|u1〉 +

1
2
|u2〉 +

1
2
|u3〉

]
= ~ω

[
1
√

2
〈u1| +

1
2
〈u2| +

1
2
〈u3|

] [
1
√

2
|u1〉 +

3
2
|u2〉 +

3
2
|u3〉

]
= ~ω

[
1
2

+
3
4

+
3
4

]
= 2~ω

and 〈
E2

〉
=

[
1
√

2
〈u1| +

1
2
〈u2| +

1
2
〈u3|

]
H2

[
1
√

2
|u1〉 +

1
2
|u2〉 +

1
2
|u3〉

]
= (~ω)2

[
1
√

2
〈u1| +

1
2
〈u2| +

1
2
〈u3|

] [
1
√

2
|u1〉 +

9
2
|u2〉 +

9
2
|u3〉

]
= (~ω)2

[
1
2

+
9
4

+
9
4

]
= 5(~ω)2

The variance is then 〈
E2

〉
− 〈E〉2 = (~ω)2 [5 − 4] = (~ω)2

One can obtain E = ~ω with probability 1
2 , and E = 3~ω with probability 1

4 + 1
4 = 1

2 .

(2b) A at t = 0

Notice that A |ψ〉 = a |ψ〉. We obtain a with probability 1, and we are in the same state as we were before.
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(2c) t > 0

Notice that
|ψ(t)〉 =

1
√

2
e−iωt |u1〉 +

1
2

e−3iωt |u2〉 +
1
2

e−i3ωt |u3〉

This is still an eigenstate of A with eigenvalue a, so the expectation value of A is a (more generally, since [A,H] = 0,
we would always have that values related to A would be unchanged). For B,

B |ψ(t)〉 =
b
2

e−3iωt |u1〉 +
b
√

2
e−iωt |u2〉 +

b
2

e−i3ωt |u3〉

so that

〈B〉 =
b

2
√

2
e−2iωt +

b

2
√

2
e2iωt +

b
4

= b
[
cos(2ωt)
√

2
+

1
4

]

(2d) A and B

We have already discussed A. B has eigenvectors

B |u3〉 = b |u3〉 and B
1
√

2
[|u1〉 + |u2〉] = b

1
√

2
[|u1〉 + |u2〉] and B

1
√

2
[|u1〉 − |u2〉] = −b

1
√

2
[|u1〉 − |u2〉]

Looking at |ψ(t)〉, we see that we can have −b with probability∣∣∣∣∣∣ 1
√

2
[〈u1| − 〈u2|]

[
1
√

2
e−iωt |u1〉 +

1
2

e−3iωt |u2〉 +
1
2

e−i3ωt |u3〉

]∣∣∣∣∣∣2
=

∣∣∣∣∣∣12e−iωt −
1

2
√

2
e−3iωt

∣∣∣∣∣∣2 =
1
4

∣∣∣∣∣∣1 − 1
√

2
e−2iωt

∣∣∣∣∣∣2
=

1
4

[
1 −

1
√

2
e−2iωt

] [
1 −

1
√

2
e2iωt

]
=

1
4

[
1 −

2
√

2
cos(2ωt) +

1
2

]
And we avoid doing any more work and conclude that we can get b with probability

1 −
1
4

[
1 −

2
√

2
cos(2ωt) +

1
2

]

3
We use the shorthand

Ai = rieiαi

(3a)

〈n + 1|H |n〉 =
[
〈n|H† |n + 1〉

]∗
= [〈n|H |n + 1〉]∗ = A∗1 = r1e−iα1

and
〈n + 2|H |n〉 =

[
〈n|H† |n + 2〉

]∗
= [〈n|H |n + 2〉]∗ = A∗2 = r2e−iα2

(3b)
H = A0 + A1T−1 + A∗1T1 + A2T−2 + A∗2T2
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(3c)
Suppose that

|k〉 =
∑

n

e−ikn |n〉

(where k = 2πm
N , for some 0 ≤ m < N). Then,

T |k〉 =
∑

n

e−ikn |n + 1〉 = eik
∑

n

e−ikn |n〉

then,
H |k〉 =

[
A0 + A1e−ik + A∗1eik + A2e−2ik + A∗2e2ik

]
|k〉 = [A0 + 2r1 cos(α1 − k) + 2r2 cos(α2 − 2k)] |k〉

(3d)
〈m| X† |n〉 = [〈n| X |m〉]∗ = [〈n| am |m〉]∗ = amδnm

which is plainly the same as
〈m| X |n〉 = 〈m| an |n〉 = anδnm

Since this holds for all n, X is hermitian. Next,

T †XT |n〉 = T †X |n + 1〉 = a(n + 1)T † |n + 1〉 = (n + 1) |n〉 = a |n〉 + an |n〉 = (a + X) |n〉

so, because n is arbitrary, we have the claim.
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Some possibly useful formulas

• The angular momentum algebra is given by [J1, J2] = ih̄J3, and cyclic permutations. The
ladder operators, defined by J± ≡ J1 ± iJ2, act as follows,

J±|j,m〉 = h̄
√
j(j + 1)−m(m± 1) |j,m± 1〉 (0.1)

where the states are properly normalized by 〈j′,m′|j,m〉 = δj,j′δm,m′ .

• ”little” CBH-formula
eABe−A = exp(AdA)B (0.2)

where AdX · = [X, ·].

• The Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(0.3)

• harmonic oscillator

a =
1√

2mωh̄

(
mωX + i P

)
a† =

1√
2mωh̄

(
mωX − i P

)
(0.4)

• Position/momentum

[X,P ] = ih̄ (0.5)
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QUESTION 1: Short questions [40 points]

a) For an operator A (with no explicit time dependence) in the Heisenberg picture, what is
the condition it has to satisfy for it to be conserved, i.e.

d

dt
A = 0 (0.6)

b) If you add a two angular momenta with ( ~J1)
2 = 30h̄2 and ( ~J2)

2 = 20h̄2, what are the
possible values of the total angular momentum squared ?

c) A gauge transformation is given by

~A→ ~A+ ~∇θ, ψ → ei
eθ
h̄ ψ (0.7)

Where θ(x) is an arbitrary function of ~x. Show that the covariant derivative of the wave
function (

− ih̄~∇− e ~A
)
ψ(x) (0.8)

transforms in the same way as ψ.

3



d) State the Ehrenfest theorem.

e) For a particle of spin 1/2 moving in a three dimensional central potential, list a maximal
set of commuting observables.

f) For a matrix U in SU(N) the matrix has to satisfy

U †U = 1, det(U) = 1 (0.9)

What does this imply for the infentisimal generator T ?

U = 1 + i ε T + o(ε2) (0.10)

4



g) You have three observables A,B,C they satisfy

[A,B] = 0, [A,C] = 0 (0.11)

what can you say about [A, [B,C]] ? (Justify your answer).

h) For the classical quantity x2p2 write down two possible forms of the corresponding
observable according to the correspondence principle.

5



QUESTION 2: [40 points]

A system of three (non-identical) spin 1/2 particles, whose spin operators are ~S1, ~S2, ~S3, is
governed by the Hamiltonian,

H =
2A

h̄2
~S1 · ~S2 +

2B

h̄2
~S3 · (~S1 + ~S2) (0.12)

where A and B are real constants.

a) Show that ~S1 + ~S2 and
∑

i=1,2,3
~Si bothe satisfy the commutation relation of

spin/angular momentum.

b) What are the possible eigenvalues that ( ~S1 + ~S2)
2 and ( ~S1 + ~S2 + ~S3)

2 can take ?

c) [10pts] Rewrite the Hamiltonian such that in only involves squares of ~Si or squares of

sums of ~Si’s.

d) [15pts] Calculate the energy levels and their respective degeneracies.

Note: In part d) you can quote results of representation theory and addition of
angular momentum

6



QUESTION 2: [40 points]

A coherent state for a single harmonic oscillator is given by

| c〉coh = e
−|c|2

2 eca
† | 0〉 (0.13)

Where | 0〉 is the ground state of the harmonic oscillator.

a) Show that | c〉coh is normalized

b) Are there any values of c1, c2 for which two coherent states are orthogonal ? (Back up
your answer with an argument or a calculation).

c) Show that | c〉coh is an eigenstate of the lowering operator a and calculate the eigenvalue.

d) Show that

|〈n | c〉coh|2 =
An

n!
e−B (0.14)

and determine A and B. Here

| n〉 =
1√
n!

(a†)n | 0〉 (0.15)

is the n-th excited state of the harmonic oscillator.

7



QUESTION 3: [40 points]

Consider a one dimensional particle moving in a potential with Hamiltonian

H =
p2

2m
+ V (x) (0.16)

Assume that the Hamiltonian has a discrete non-degenerate spectrum (i.e. there are only
bound states)

H | n〉 = En | n〉, En 6= Em if n 6= m (0.17)

a) Show that

[[x,H], x] =
h̄2

m
(0.18)

b) Show that the following ”sum rule” holds (it’s called that because you sum over all
states).

∑
m

(Em − En)
∣∣∣〈n | x | m〉∣∣∣2 =

h̄2

2m
(0.19)

Hint: insert a complete set of states in the appropriate place.

c) Calculate
〈n | x | m〉 (0.20)

for the harmonic oscillator

d) Verify the sum rule for the harmonic oscillator

8



QUESTION 4: [40 points]

Consider two (distinguishable) spin 1/2 particles with Hamiltonian

H = h0
(
σ(1)
x ⊗ σ(2)

x + σ(1)
y ⊗ σ(2)

y

)
(0.21)

Where σi are the Pauli-matrices.

a) Show that
[σ(1)

x ⊗ σ(2)
x , σ(1)

y ⊗ σ(2)
y ] = 0 (0.22)

b) Calculate the spectrum of H

c) Calculate the state at time t | ψ(t)〉 with the initial condition

| ψ(t = 0)〉 =| j =
1

2
,m =

1

2
〉⊗ | j =

1

2
,m =

1

2
〉 (0.23)

Where m denotes the eigenvalue of σz.

d) For the state obtained in c) Calculate

〈ψ(t) | σz ⊗ σz | ψ(t)〉 (0.24)

9



221A Practice Final Solution
Antonio Russo

December 3, 2013

1 Short Questions

(1a) Conserved Observable
A must commute with H, i.e., [A,H] = 0

(1b) Addition of Angular Momentum
We have

(J1)2 = 30~2 = 5 · 6 · ~2 = j1( j1 + 1)~2 so j1 = 5

and
(J2)2 = 20~2 = 4 · 5 · ~2 = j2(21 + 1)~2 so j2 = 4

The sum can will have anywhere from | j1 − j2| = 1 to j1 + j2 = 9, or J2 between 2~2 and 90~2.

(1c) Gauge Transformation
Under the gauge transformation,[

−i~~∇ − e~A
]
ψ→

[
−i~~∇ − e~A′

]
ψ′ =

[
−i~~∇ − e

(
~A + ~∇θ

)]
ei eθ
~ ψ

=
[
−e

(
~A + ~∇θ

)]
ei eθ
~ ψ − i~

[
ei eθ
~ ~∇ψ + i

e
~

(
~∇θ

)
ei eθ
~ ψ

]
= ei eθ

~

[
−i~~∇ − e

(
~A + ~∇θ

)]
ψ + e

(
~∇θ

)
ei eθ
~ ψ = ei eθ

~

[
−i~~∇ − e~A

]
ψ

(1d) Ehrenfest Theorem

∂t 〈A〉ψ =
1
i~
〈[A,H]〉ψ + 〈∂tA〉ψ

(1e) Spin 1/2 Maximal Set of commuting oberservables
Here is one such list: px, py, pz, S z (and, if you like, the Casimir operator S 2).

(1f) Infinitesimal Generator of Unitary Operator
If U† = U−1, the tayor expansions

U† = 1 − iεT † + o(ε2)

and
U−1 = 1 − iεT + o(ε2)

are equal. Therefore T = T † is hermitian.

(1g) Three Commutators
[A, [B,C]] = [A, BC] − [A,CB] = B [A,C] + [A, B] C −C [A, B] − [A,C] B = 0

(1h) Corresponding Quantum Operator
All symmetric combinations of x and p are candidate quantum operators.

x2 p2 + p2x2, ix2 p2 − ip2x2, xp2x, px2 p, xpxp + pxpx, ixpxp − ipxpx
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2 Three Spins

(2a) Commutator
Since the commutators are linear, this follows immediately.

(2b) Eigenvalues

Put ~J12 = ~S 1 + ~S 2 and ~J′ = ~J12 + ~S 3. Because

D1/2 ⊗ D1/2 = D0 ⊕ D1

j12 can be either 0 or 1. Similarly, because(
D(1/2) ⊗ D(1/2)

)
12
⊗ D(1/2)

3 =
(
D(0)

12 ⊕ D(1)
12

)
⊗ D(1/2)

3 =
(
D(0)

12 ⊗ D(1/2)
3

)
⊕

(
D(1)

12 ⊗ D(1/2)
3

)
= D(1/2)

j12=0 ⊕ D(1/2)
j12=1 ⊕ D(3/2)

j12=1

j′ can be either 1/2 or 3/2. The possible eigenvalues are therefore

J2
12 = 0, 2~2 and J′2 =

3
4
~2,

15
4
~2

(we will use the full decomposition we found here in part (d).

(2c) Rewritten
Note that

J2
12 = S 2

1 + 2~S 1 · ~S 2 + S 2
2 so that ~S 1 · ~S 2 =

1
2

[
J2

12 − S 2
2 − S 2

1

]
and

J′2 = J2
12 + 2 ~J12 · ~S 3 + S 2

3 so that ~S 3 · ~J12 =
1
2

[
J′2 − J2

12 − S 2
3

]
It follows that

H =
A
~2

[
J2

12 − S 2
2 − S 2

1

]
+

B
~2

[
J′2 − J2

12 − S 2
3

]
or, collecting terms

H =
1
~2 J2

12 [A − B] −
A
~2

[
S 2

2 + S 2
1

]
−

B
~2 S 2

3 +
1
~2 J′2B

=
1
~2 J2

12 [A − B] −
A
~2

[
3
4
~2 +

3
4
~2

]
−

B
~2

3
4
~2 +

1
~2 J′2B

=
1
~2 J2

12 [A − B] +
1
~2 J′2B −

3
2

A +
3
4

B

(2d) Energies
The decomposition we performed in part (b) shows that j′2 and j212 are good quantum numbers. Indeed, when j′ = 1/2,
j12 = 0, 1. For |ψ〉 =

∣∣∣ j′ = 1/2, j12 = 0, j′z = ±1/2
〉

(the 2 states)

H |ψ〉 =
(

3
4

B −
3
2

A +
3
4

B
)
|ψ〉 =

3
2

[B − A] |ψ〉

For |ψ〉 =
∣∣∣ j′ = 1/2, j12 = 1, j′z = ±1/2

〉
( the 2 states)

H |ψ〉 =
(
2(A − B) +

3
4

B −
3
2

A +
3
4

B
)
|ψ〉 =

1
2

[A − B] |ψ〉

When j′ = 3/2, j12 = 1, and for (the 4 states) |ψ〉 =
∣∣∣ j′ = 3/2, j12 = 1, j′z = ±3/2,±1/2

〉
,

H |ψ〉 =
(
2(A − B) +

15
4

B −
3
2

A +
3
4

B
)
|ψ〉 =

1
2

[A + B] |ψ〉
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3 Coherent State

(3a) Normalization

|c〉coh = e−|c|
2/2

∑
n

1
n!

cn(a†)n |0〉 = e−|c|
2/2

∑
n

1
√

n!
cn |n〉

so that
〈c|coh |c〉coh = e−|c|

2
∑

n

1
n!
|c|2n = 1

(3b) Orthogonality

〈c1|coh |c2〉coh = e−(|c1 |
2+|c2 |

2)/2
∑

n

1
n!

(̄c̄1c2)n = e−(|c1 |
2+|c2 |

2)/2+c̄1c2

To make this quantity vanish, the real part of −(|c1|
2+ |c2|

2)/2+ c̄1c2 must be infinite and negative, which is not possible
for finite c1 and c2.

(3c) Eigenstate

a |c〉coh = e−|c|
2/2

∑
n

1
√

n!
cna |n〉 = e−|c|

2/2
∑

n

√
n
√

n!
cn |n − 1〉 = c |c〉coh

(3d) Decomposition
We did this already in part (a),

|〈n|c〉coh|
2 = e−|c|

2 1
n!

(|c|2)n

4 Sum Rule

(4a) Commutation
First, notice that [x,V(x)] = 0. Therefore,

[x,H] =
1

2m
([x, p]p + p[x, p]) = i~

p
m

so that

[[x,H], x] = i~
1
m

[p, x] = i~
1
m

(−i~) =
~2

m

(4b) The Sum Rule
Taking part (a) as a hint, we notice that

~2

m
= [[x,H], x] = [xH − Hx, x] = xHx − Hx2 − x2H + xHx = 2xHx − Hx2 − x2H

or

xHx −
Hx2 − x2H

2
=
~2

2m
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Using this,

∑
m

(Em − En) |〈n| x |m〉|2 =
∑

m

〈n| x |m〉 (Em − En) 〈m| x |n〉 = 〈n| x

∑
m

(Em − En) |m〉 〈m|

 x |n〉

= 〈n| x

∑
m

(H − En) |m〉 〈m|

 x |n〉 = 〈n| x(H − En)

∑
m

|m〉 〈m|

 x |n〉

= 〈n| x(H − En)x |n〉 = 〈n|
(
xHx − x2En

)
|n〉 = 〈n|

(
xHx −

x2En + Enx2

2

)
|n〉

= 〈n|
(
xHx −

x2H + Hx2

2

)
|n〉 = 〈n|

~2

2m
|n〉 =

~2

2m

(4c) Harmonic Oscillator

First, recall that x =
√

~
2mω

(
a + a†

)
. It follows that

〈n| x |m〉 =

√
~

2mω

[√
m + 1δn,m+1 +

√
mδn+1,m

]
(4d) Harmonic Oscillator Sum Rule

∑
n

(En − Em) |〈n| x |m〉|2 = ~ω
∑

n

(n − m)

∣∣∣∣∣∣∣
√
~

2mω

[√
m + 1δn,m+1 +

√
mδn+1,m

]∣∣∣∣∣∣∣
2

=
~2

2m

∑
n

(n − m)
∣∣∣∣√nδn,m+1 +

√
m + 1δn+1,m

∣∣∣∣2 = ~2

2m
[(m + 1) − m] =

~2

2m

5 Two Distinguishable 1/2 Spin Particles

(5a) Commutator
[
σ(1)

x ⊗ σ
(2)
x , σ(1)

y ⊗ σ
(2)
y

]
= σ(1)

x σ(1)
y ⊗ σ

(2)
x σ(2)

y − σ
(1)
y σ(1)

x ⊗ σ
(2)
y σ(2)

x = −σ
(1)
z ⊗ σ

(2)
z + σ

(1)
z ⊗ σ

(2)
z = 0

(5b) Spectrum
Just writing the terms down,

H
h0~
=

[
0 σx

σx 0

]
+

[
0 −iσy

iσy 0

]
=


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

+


0 0 0 (−i) · (−i)
0 0 (−i) · i 0
0 i · (−i) 0 0

i · i 0 0 0

 = 2


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0


So, we have two 0 energies (|±±〉), and ±2h0~ ( 1

√
2

[|+−〉 ± |−+〉])

(5c)
This state is

|ψ(t = 0)〉 = |++〉

But, this is a zero energy eigenstate. So its time evolution is trivial (constant). We don’t bother writing it down again.

(5d)
This state is also an eigenstate of σz ⊗ σz, with eigenvalue ~2, and hence this is also the expectation value.
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Some possibly useful formulas

• Harmonic oscillator for a Hamiltonian

H =
p2

2m
+

1

2
mω2x2 = h̄ω(a†a+

1

2
) (0.1)

with

a =
1√

2mh̄ω
(mωx+ ip) [a, a†] = 1 (0.2)

• The angular momentum algebra is [J1, J2] = ih̄J3, and two cyclic permutations
thereof. The corresponding ladder operators are defined to be J± = J1 ± iJ2, and act
by

J±|j,m〉 = h̄
√
j(j + 1)−m(m± 1) |j,m± 1〉 (0.3)

• Spherial harmonics

Y 0
0 =

1√
4π

(0.4)

Y 0
1 =

√
3

4π
cos theta (0.5)

Y ±11 = ∓
√

3

8π
sin θe±iφ (0.6)
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QUESTION 1: [30pts]

Consider a pair of harmonic oscillators with unperturbed Hamiltonian

h̄ω1(a
†
1a1 +

1

2
) + h̄ω2(a

†
2a2 +

1

2
) (0.7)

where ω1 < ω2 < 2ω1. A perturbation is added

H1 = ε(a†1a
†
1a2 + a†2a1a1) (0.8)

a) Find the three lowest eigenstates of the unperturbed Hamiltonian.

b) Show that two of the three lowest levels are exact eigenstates of H0 +H1.

c) Calculate the first non vanishing correction to the energy and the state for the third.
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QUESTION 2: [40 points]

A relativistic particle in one dimension with mass m is subject to a harmonic oscillator
potential, and governed by the following Hamiltonian,

Hc =
√
m2c4 + p2c2 −mc2 +

1

2
mω2x2 (0.9)

where [x, p] = ih̄.

a) Show that n the limit c→∞, the Hamiltonian Hc reduces to the standard
non-relativistic harmonic oscillator Hamiltonian (which will be denoted here by H∞).

b) Using perturbation theory in power of 1/c2, compute the leading relativistic correction
to the ground state energy of H∞.

c) For the general case of finite c show that, in a basis where p is diagonal, the spectrum
of Hc may be obtained by solving a Schrödinger-like differential equation.

d) Estimate the ground state energy using the variational method for the equation in c).
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QUESTION 3: [40 points]

We consider the Hamiltonian of a rigid rotator given by

H0 =
~L2

2I
(0.10)

Where I is the moment of inertia.
It is assumed that the rigid rotator has a magnetic moment and is placed in an uniform
electric field in the z-direction. Averaging over the radial dependence this amounts to
adding a perturbation

H ′ = −εµ cos θ (0.11)

(i.e. For the problem you can neglect any radial dependence and treat the problem as one
which only depends on the angular coordinates θ and φ).

a) Find the spectrum and degeneracies of H0.

b) Using the following relation

cos θ Y m
l =

√√√√ (l + 1)2 −m2

(2l + 1)(2l + 3)
Y m
l+1 +

√√√√ l2 −m2

(2l + 1)(2l − 1)
Y m
l−1 (0.12)

where Y m
l are the spherical harmonics in standard spherical coordinatesl, Calculate the

following matrix elements
〈lm| cos θ|l′m′〉 (0.13)

Hint: very few of the matrix elements are nonzero.

c) Using the results of b) argue that: First, the first order contribution in perturbation
theory to the energy of the state | lm〉 vanishes. Second, even though the spectrum is
degenerate one can apply second order perturbation theory

d) Calculate the second oder contribution to the shift in the energy for the state | lm〉.

5



Quantum Mechanics: 221B, Practice Midterm

Antonio Russo
Real Exam: February 3, 2014

1 Two SHOs

H = ~ω1(N1 + 1/2) + ~ω2(N2 + 1/2) and H1 = ε(a†1a
†
1a2 + a†2a1a1)

(a) Unperturbed States

The lowest eigenstates of H are

|00〉 with E00 =
~
2

[ω1 + ω2)

and

|10〉 with E10 =
~
2

[3ω1 + ω2)

and

|01〉 with E01 =
~
2

[ω1 + 3ω2)

(b) Lowest Levels

Notice that
H1 |00〉 = ε(a†1a

†
1a2 + a†2a1a1) |00〉 = 0

and
H1 |10〉 = ε(a†1a

†
1a2 + a†2a1a1) |10〉 = 0

(so these states are unaffected).

(c) Lowest correction for |10〉
Notice that

H1 |01〉 = ε(a†1a
†
1a2 + a†2a1a1) |01〉 = ε |20〉

It follows that the first order correction to the energy level is zero. The second order correction is (noticing
there is no degeneracy)

∆E
(2)
01 = ε2

1

E
(0)
01 − E

(0)
20

=
ε2

~ [ω2 − 2ω1]

2 Relativistic SHO

(a) H∞

Hc = mc2

[√
1 +

p2

m2c2
− 1

]
+

1

2
mω2x2 = mc2

[
1 +

1

2

p2

m2c2
− 1

8

p4

m4c4
+ o

(
p2

m2c2

)3

− 1

]
+

1

2
mω2x2

.
=

p2

2m
− 1

8

p4

m3c2
+

1

2
mω2x2

As c→∞, we just get the SHO Hamiltonian.
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(b) Leading Correction

Notice that

p = −i
√

2

m~ω
so that

H0 = ~ω(a†a+ 1/2) and H1 −
1

8

p4

m3c2
= − ~2ω2

32mc2
(
a− a†

)4
(notice that there is no degeneracy). The first order energy shift is

∆E(1) = 〈0|H1 |0〉 = − ~2ω2

32mc2
〈0| (a− a†)4 |0〉

The final product has 24 = 16 terms, but vanishes unless the leftmost and rightmost terms are a and a†,
respectively. Furthermore, the number of a and a† must be equal. This leaves us with just two terms:

〈0| (a− a†)4 |0〉 = 〈0| a
[
aa† + a†a

]
a† |0〉 = 〈0| a

[
1 + 2a†a

]
a† |0〉

= 〈0|
[
aa† + 2aa†aa†

]
|0〉 = 〈0|

[
3aa†

]
|0〉 = 3

so that

∆E(1) = − 3~2ω2

32mc2

(c) Momentum Basis

Put
ψ(p) = 〈p|ψ〉

so that

|ψ〉 = I |ψ〉 =

∫
1

2π
|p〉 〈p|ψ〉 dp =

1

2π

∫
ψ(p) |p〉 dp

Then,

p̂ |ψ〉 =
1

2π

∫
pψ(p) |p〉 dp

and

x̂ |ψ〉 =
1

2π

∫
(i~)ψ′(p) |p〉 dp

Thus,

Hc |ψ〉 =
1

2π

∫ [√
m2c4 + p2c2 −mc2 − 1

2
mω2(~∂p)2

]
ψ(p) |p〉 dp

Putting µ = 1
mω2 and V (p) =

√
m2c4 + p2c2 −mc2,

Hc |ψ〉 =
1

2π

∫ [
− ~2

2µ
∂2p + V (p)

]
ψ(p) |p〉 dp

which is “Schrödinger-like”.

3 Disturbed Rigid Rotator

H0 =
L2

2I
and H ′ = −εµ cos θ

(a) H0

We recall the eigenvalues of L2:

H0 |l,m〉 =
1

2I
· ~2l(l + 1) |l,m〉

where l ∈ Z with l ≥ 0, and m ∈ Z with |m| ≤ l
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(b) The Math

〈lm| cos θ |l′m′〉 =

∫
dΩ(Y ml )∗ cos θY m

′

l′ =

∫
dΩ(Y ml )∗

[√
(l + 1)2 −m2

(2l + 1)(2l + 3)
Y m

′+1
l′ +

√
l2 −m2

(2l + 1)(2l − 1)
Y m

′−1
l′

]

= δmm′

δl,l′+1

αl,+︷ ︸︸ ︷√
(l + 1)2 −m2

(2l + 1)(2l + 3)
+δl,l′−1

αl,−︷ ︸︸ ︷√
l2 −m2

(2l + 1)(2l − 1)


(c) The Reasoning

Notice that H ′ does not allow mixing of different m values; i.e., 〈lm|H ′ |l′m′〉 ∝ δmm′ . We can therefore
treat each m sector separately. In any m sector, it is clear that there is no longer any degeneracy, and the
first order corrections vanish (since there are no diagonal terms).

(d) Second Order

The second order correction is

E
(2)
lm = −

∑
l′

|〈l′m′|H ′ |lm〉|2

E
(0)
lm − E

(0)
l′m′

= −2I

~2
µ2
∑
l′

δl,l′+1α
2
l,+ + δl,l′−1α

2
l,−

l′(l′ + 1)− l(l + 1)

= −2I

~2
µ2

[
Θ(l − 1)

α2
l,+

l′(l′ − 1)− l(l + 1)
+

α2
l,−

(l′ + 2)(l′ + 1)− l(l + 1)

]

The Θ just means that this term doesn’t appear for l = 0.
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PHYSICS 221B

Practice Final

Real exam: Thursday March 20th, 2014, at 11.30am - 2.30pm. Room: TBA

• Please write clearly

• If you separate pages please print your name on every page used, including this one;

• Make clear which question and which part you are answering on each page.

• No core-dumps please !

• No books, notes, computers, or calculators are allowed during the exam;

• Please turn off all electronic devices.

Good Luck !!

question possible points achieved points

1. 40
2. 30
3. 30
4. 40
5. 40

Total 180



Some possibly useful formulas

1. Harmonic oscillator for a Hamiltonian

H =
p2

2m
+

1

2
mω2x2 = h̄ω(a†a+

1

2
) (0.1)

with

a =
1√

2mh̄ω
(mωx+ ip) [a, a†] = 1 (0.2)

2. The angular momentum algebra is [J1, J2] = ih̄J3, and two cyclic permutations thereof.
The corresponding ladder operators are defined to be J± = J1 ± iJ2, and act by

J±|j,m〉 = h̄
√
j(j + 1)−m(m± 1) |j,m± 1〉 (0.3)

3. spherical Bessel functions jl

j0(x) =
sinx

x
(0.4)

j1(x) =
sinx

x2
− cosx

x
(0.5)

4. Spherial harmonics

Y 0
0 =

1√
4π

(0.6)

Y 0
1 =

√
3

4π
cos θ (0.7)

Y ±11 = ∓
√

3

8π
sin θe±iφ (0.8)

5. Scattering formula

eik·r =
∞∑
`=0

i`(2`+ 1)j`(kr)P`(cos θ)

ψk(r) =
1

(2π)3/2

[
eik·r + f(k′,k)

eikr

r

]

f(k′,k) =
∞∑
`=0

(2`+ 1)
e2iδ` − 1

2ik
P`(cos θ) (0.9)

2



6. phase shift for spherical symmetric potential, 1st Born approximation

δl = −k
∫ ∞
0

drr2U(r)(jl(kr))
2 (0.10)

7. Possible useful integrals: ∫ 2π

0
dφ eia sinφ = 2πJ0(|a|) (0.11)∫ π

0
dθ sin θJ0(b sin θ) =

2 sin b

b
(0.12)

where J0 is the Bessel function of the first kind.
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QUESTION 1: [40 points]

Consider a particle of mass m moving in one dimension, subject to a attractive delta
function potential V0(x) = −αδ(x).

a) Verify that there is a bound state

ψ
(0)
0 =

√
κe−κ|x|, κ =

mα

h̄2
(0.13)

with energy

E
(0)
0 = − h̄

2κ2

2m
(0.14)

(You can assume without proof that this is the only state with negative energy).

b) There are also continuous (scattering states) with positive energy. Verify that the state

ψ−,k(x) =
1√
π

sin kx (0.15)

is an eigenstate of the Hamiltonian H0 = p2

2m
+V0. (Note there are also states which are even

under parity x→ −x, which are modified by the presence of V0).

c) We now introduce a small uniform electric field which leads an additional contribution to
the potential

V1 = −eEx (0.16)

Treating V1 as a perturbation. Calculate the correction of the bound state energy E0 to
second order in perturbation theory.

Hint: In the formulae for perturbation theory the discrete sum gets replaced by an
integral for a continuum. Find an argument why only the states found in b) contribute (i.e.
the states with even parity do not contribute).

d) Calculate the polarizability for the ground state.
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QUESTION 2: [30 points]

Consider the scattering of a spinless particle of mass m from a diatomic molecule. The
incoming momentum is ~p = h̄kêz Assume that the molecule is much heavier than the scat-
tering particle and that there is no recoil. The two atoms in the molecule are aligned along
the y-axis and localized at y = b and y = −b. The potential the particle feels in the presence
of the molecule can be modeled by delta functions:

V (~x) = α
(
δ(y − b)δ(x)δ(z) + δ(y + b)δ(x)δ(z)

)
a) Calculate the scattering amplitude in the first Born approximation.

b) Calculate the differential cross section from a) (Express the result in terms of the scat-
tering angles).

c) Calculate the total cross section. You can either do the integrals exactly or calculate
the total cross section to order k2 (inclusive) in the small k limit.
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QUESTION 3: [30 points]

A two state system is described by the following Hamiltonian

H = H0 + V (t)

With a time independent H0 and a two orthonormal basis vectors satisfying

H0 | 1〉 = ε1 | 1〉, H0 | 2〉 = ε2 | 2〉

The perturbation satisfies

V (t) | 1〉 = h̄ω1e
−iωt | 2〉, V (t) | 2〉 = h̄ω1e

iωt | 1〉

a) Find the eigenvalues and eigenvectors of H

b) Solve the time dependent Schrödinger equation for t > 0 for a state with initial condition

| ψ(t = 0)〉 =| 1〉

c) Calculate the probability to find the system at time t > 0 in the state | 2〉.
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QUESTION 4: [40 points]

A particle is scattered by a spherical symmetric potential at energies which are low enough
so that only the phase shifts δ0 and δ1 are nonzero. (For part a)-c) treat δ0, δ1 as given).

a) Show that the differential cross section is of the form

dσ

dΩ
= A+B cos θ + C cos2 θ

b) Determine A,B,C in terms of the phase shifts

c) Calculate the total cross section in terms of A,B,C.

d) Consider a very weak and short range potential (which behaves not worse than 1/r at
the origin). Estimate the k dependence of δ0 and δ1 in the limit k → 0.

7



QUESTION 5: [40 points]

Consider the one dimensional harmonic oscillator with Hamiltonian

H0 =
p2

2m
+

1

2
m ω2x2

At time t > 0 the following perturbation is turned on

H ′(t) = α x e−
t
τ

a) If at time t < 0 the system is in its ground state (of H0) calculate to first order in time
dependent perturbation theory the probability that the system is found at time t > 0 in the
first excited state.

b) If at time t < 0 the system is in the first excited state (of H0) calculate to first order in
time dependent perturbation theory the probability that the system is found at time t > 0
in the ground state.

c) If the system at time t < 0 is in the found state of H0, at which order in perturbation
theory would you expect to find a nonzero transition probably to the second excited state
(Why?). Calculate this probability.

d) For the harmonic oscillator with Hamiltonian H0 above, give an example of an adiabatic
change and a sudden change. What is the time scale which is used to decide whether an
adiabatic or sudden change approximation is appropriate ?

If the system is in the ground state at time t = 0 describe (without calculation) how the
state evolves at later times for the two cases.

8
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Antonio Russo
Real Exam: March 20, 2014

1 1D δ Potential

(a) Bound State

If V (x) = −αδ(x)

− ~2

2m

d2

dx2
ψ(x)− αδ(x)ψ(x) = Eψ(x)

d2

dx2
ψ(x)− β2ψ(x) = −2mα

~2
δ(x)ψ(x) (1)

Where β2 = − 2mE
~2 . Apart from the origin, this is a first order homogeneous equation. The general

solution is:

ψ(x) =

{
A exp(−βx) x > 0
B exp(βx) x < 0

(2)

Here we used the condition that the wave function should be normalizable, so ψ(x) → 0, as x → ±∞.
A, B are constants which will be determined later.

Now use the connecting condition:

ψ(0−) = ψ(0+)

d

dx
ψ(0+)− d

dx
ψ(0−) = −2mα

~2
ψ(0) (3)

Take the general solution into the above equation, we first find A = B , and

−2Aβ = −2mα

~2
A (4)

So, β = mα
~2 , and the bound state energy is E = −mα

2

2~2 .
Using normalization condition, the constant is found to be A =

√
β.

So, to sum up, there is only one bound state with energy E = −mα
2

2~2 , and ψ(x) =
√
β exp(−β|x|)

(b) Continuum

It’s easy to see that p2ψ−k(x) ∝ sin(kx) ∝ ψ−k(x), and that ψ−k(0) = 0, so the V0 term vanishes for this
state.

(c) Electric Field Perturbation

First, notice that, for a discrete spectrum

∆En = λVnn + λ2
∑
k 6=n

|〈n|V |k〉|2

E
(0)
n − E(0)

k

we are considering a case where |n〉 will be even, and V ∝ x. V |k〉 must therefore be even, so |k〉 must be
odd. This tells us that the first order correction vanishes. Generalizing to the continuum,

∆En =

∫
dk√
2π

|〈n|V |k〉|2

E
(0)
0 − ~2k2

2m

= − 2me2E2

~2κ2
√

2π

∫
dk
|〈n| x̂ |k〉|2

1 + (k/κ)2
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We have that

〈n| x̂ |k〉 =

∫
dx
√
κe−κ|x|x

1√
π

sin kx =

√
κ

π

∫
dx e−κ|x|x sin kx

= 2

√
κ

π

∫ ∞
0

dx e−κxx sin kx = 2

√
κ

π

∫ ∞
0

1

k
du e−(κ/k)uu/k sinu

= 2

√
κ

π

1

k2

∫ ∞
0

du e−(κ/k)uu sinu = 2

√
κ

π

1

k2
∂α

∫ ∞
0

du e−αu sinu

∣∣∣∣
α=κ/k

= 2

√
κ

π

1

k2
∂α

1

α2 + 1

∣∣∣∣
α=κ/k

= 2

√
κ

π

1

k2
−2α

(α2 + 1)2

∣∣∣∣
α=κ/k

= −2

√
κ

π

2kκ

(κ2 + k2)2

so

∆En = − 8κme2E2

π~2κ2
√

2π

∫
dk

1

1 + (k/κ)2
4k2κ2

(κ2 + k2)4

= − 8κme2E2

π~2κ6
√

2π

∫
dk

1

1 + (k/κ)2
4(k/κ)2

(1 + (k/κ)2)4

= − 32me2E2

π~2κ5
√

2π

∫
dk

(k/κ)2

(1 + (k/κ)2)5

(d) Polarizability

α = − 2

E2
∆E(2)

n

2 Diatomic Scattering of Spinless Particle

(a) First Born

U =
2m

~2
V = α̃δ(x)δ(z) [δ(y − b) + δ(y + b)]

f(k,k′) = − (2π)3/2

4π

∫
d3ye−ik

′·yU(y)eik·y = −2mα

~2
(2π)3/2

4π

∫
dyei(ky−k

′
y)y [δ(y − b) + δ(y + b)]

= −2mα

~2
(2π)3/2

4π

[
ei(ky−k

′
y)b + e−i(ky−k

′
y)b
]

= −4mα

~2
(2π)3/2

4π
cos(ky − k′y)b

(b) Cross Section

Using p = ~kẑ, ky = 0, so k′y = k sin θ cosφ, and

dσ

dΩ
= |f |2 =

8π2m2α2

~4
cos2(kb sin θ cosφ)

(c) Total Cross Section

σt =
8πm2α2

~4

∫
cos2(kb sin θ cosφ) sin θ dθdφ→ 32π3m2α2

~4

as b→ 0.
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3 Two State System

(a) Eigenvalues and Eigenvectors

Put U =

[
eiωt/2 0

0 e−iωt/2

]
, so that U†HU =

[
ε1 ε′

ε′ ε2

]
, with ε′ = ~ω1. This has eigenvalues λ given by

0 = (ε1 − λ)(ε2 − λ)− ε′2 = λ2 − (ε1 + ε2)λ+ (ε1ε2 − ε′2)

or

λ± =
ε1 + ε2 ±

√
(ε1 + ε2)2 − 4(ε1ε2 − ε′2)

2
=
ε1 + ε2 ±

√
(ε1 − ε2)2 + 4ε′2

2
For the eigenvector,

λ±

[
a
b

]
= U†HU

[
a
b

]
=

[
aε1 + ε′b

· · ·

]
or

λ± − ε1 =
b

a
ε′ or g± =

b

a
=
λ± − ε1

ε′

I.e., the eigenvectors are U |φ±〉, with

|φ±〉 =
1√

2 + 2g2±

[
1

g±

]

(b) Solution to Time-dependent Schrödinger Equation

i~∂t |ψ(t)〉 = H(t) |ψ(t)〉
or

i~U†∂t |ψ(t)〉 = U†H(t)UU† |ψ(t)〉
but

∂tU
†(t) |ψ(t)〉 =

(
∂tU

†(t)
)
|ψ(t)〉+ U†(t)∂t |ψ(t)〉

so that

U†(t)∂t |ψ(t)〉 = ∂tU
†(t) |ψ(t)〉 − iω

2
σzU

†(t) |ψ(t)〉

especially

i~∂tU† |ψ(t)〉 =

[
−~ω

2
σz + U†H(t)U

]
U† |ψ(t)〉

and therefore
U† |ψ(t)〉 =

[
e−i(λ+/~−ω/2)t |φ+〉 〈φ+|+ e−i(λ−/~+ω/2)t |φ−〉 〈φ−|

]
|ψ(0)〉

If |ψ(0)〉 =

[
1
0

]
, then

|ψ(t)〉 =
1√
2
U(t)

 1√
1 + g2+

e−i(λ+/~−ω/2)t |φ+〉+
g−√

1 + g2−

e−i(λ−/~+ω/2)t |φ−〉


(c) Finally 2

This is just substitution:

〈2|ψ(t)〉 =
e−iωt/2√

2

 1√
1 + g2+

e−i(λ+/~−ω/2)t 〈2|φ+〉+
g−√

1 + g2−

e−i(λ−/~+ω/2)t 〈2|φ−〉


=
e−iωt/2√

2

[
g+

1 + g2+
e−i(λ+/~−ω/2)t +

g−
1 + g2−

e−i(λ−/~+ω/2)t
]
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4 Spherical Symmetric Potential

(a) Different Cross Section: f

f(θ, φ) =
1

2ik

∑
l

(2l + 1)(e2iδl − 1)Pl(cos θ)
.
=

1

2ik

[
(e2iδ0 − 1) + 3(e2iδ1 − 1) cos θ

]
It clear that squaring this will gives terms like the claim; see the next part for their determination.

(b) Different Cross Section: Revisited

dσ

dΩ
= |f |2 .

=
1

4k2
[
(e2iδ0 − 1) + 3(e2iδ1 − 1) cos θ

] [
(e−2iδ0 − 1) + 3(e−2iδ1 − 1) cos θ

]
=

1

2k2
[
(1− cos(2δ0) + 9(1− cos(2δ1) cos2 θ + 3

(
(e2iδ0 − 1)(e−2iδ1 − 1) + (e−2iδ0 − 1)(e2iδ1 − 1)

)
cos θ

]
Next:

(e2iδ0 − 1)(e−2iδ1 − 1) + (e−2iδ0 − 1)(e2iδ1 − 1)

= e2iδ0(e−2iδ1 − 1)− (e−2iδ1 − 1) + e−2iδ0(e2iδ1 − 1)− (e2iδ1 − 1)

= e2i(δ0−δ1) − e2iδ0 − e−2iδ1 + 1 + e−2i(δ0−δ1) − e−2iδ0 − e2iδ1 + 1

= 2 [1 + cos 2(δ0 − δ1)− cos(2δ0)− cos(2δ1)]

so that

A =
1− cos(2δ0)

2k2

B =
3

k2
[1 + cos 2(δ0 − δ1)− cos(2δ0)− cos(2δ1)]

and

C =
9

2k2
(1− cos(2δ1))

(c) Cross Section

σt =

∫
dσ

dΩ
dΩ = A

∫
dΩ +B

∫
cos θ dΩ + C

∫
cos2 θ dΩ

= 4πA+ 2πB

∫ −1
1

cos θ d[cos θ] + 2πC

∫ −1
1

cos2 θ d[cos θ] = 4πA+
4

3
πC

(d) Low Momentum Limit

We use the 1st Born approximation

δl = −k
∫ ∞
0

r2 dr U(r)(jl(kr))
2

For δ0, j0 = sin(kr)
kr , so

δ0 = −k
∫ ∞
0

r2 dr U(r)
sin2(kr)

k2r2
→ −k

∫ ∞
0

r2 dr U(r) = − k

4π

∫
dV U

(it goes like − k
4π times the total interaction strength). For δ1, j1 = sin kr

k2r2 −
cos kr
kr → 1

kr −
1−k2r2
kr = −kr so

that

δ1 → −k
∫ ∞
0

r2 dr U(r)k2r2 = −k3
∫ ∞
0

r4 dr U(r)
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5 Perturbed SHO

(a) First Excited State

c
(1)
1 (t) = − i

~

∫ t

0

eiω10t
′
V10(t′) dt′ = − iα 〈1|x |0〉

~

∫ t

0

e(iω10−τ−1)t′ dt′ = − α 〈1|x |0〉
~ω − ~τ−1

[
1− e(iω−τ

−1)t
]

and

a+ a† = 2mω

√
1

2m~ω
x or x =

√
2mω

~
(a+ a†)

〈1|x |0〉 = 〈0| ax |0〉 =

√
2mω

~
〈0| a

[
a† + a

]
|0〉

=

√
2mω

~
〈0| aa† |0〉 =

√
2mω

~

We can simplify a little:∣∣∣1− e(iω−τ−1)t
∣∣∣2 = (1− cos(ωt)e−t/τ )2 + sin2(ωt)e−2t/τ

= 1− 2 cos(ωt)e−t/τ + cos2(ωt)e−2t/τ + sin2(ωt)e−2t/τ = 1 + e−2t/τ − 2 cos(ωt)e−t/τ

To first order in perturbation theory,∣∣∣c(1)1 (t)
∣∣∣2 = −2mω

~
α2

[~ω − ~τ−1]
2

∣∣∣1− e(iω−τ−1)t
∣∣∣2 = −2mω

~
α2

[~ω − ~τ−1]
2

(
1 + e−2t/τ − 2 cos(ωt)e−t/τ

)
(b) Ground State

c(1)n (t) = − i
~

∫ t

0

eiωn0t
′
Vn0(t′) dt′ = − iα 〈n|x |0〉

~

∫ t

0

e(iωn0−τ−1)t′ dt′

For n 6= 1

〈n|x |0〉 ∝ 〈0| anx |0〉 ∝ 〈0| an
[
a† + a

]
|0〉 = 0

To first order in perturbation theory,

P0(t) = 1−
∑
n

|c(1)n (t)|2 = 1− |c(1)1 (t)|2
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(c) Second Excited State

We use second order perturbation theory

c
(2)
2 (t) =

(
− i
~

)2∑
n

∫ t

0

dt′
∫ t′

0

dt′′ eiω2mt
′
V2m(t′)eiωm0t

′′
Vm0(t′)

=

(
− i
~

)2 ∫ t

0

dt′
∫ t′

0

dt′′ eiω21t
′
V21(t′)eiω10t

′′
V10(t′)

= −α
2 〈2|x |1〉 〈1|x |0〉

~2

∫ t

0

dt′
∫ t

0

dt′′e(iω21−τ−1)t′e(iω10−τ−1)t′′

= −α
2 〈2|x |1〉 〈1|x |0〉

~2
1

iω − τ−1

∫ t

0

dt′e(iω−τ
−1)t′

[
1− e(iω−τ

−1)t′
]

= −α
2 〈2|x |1〉 〈1|x |0〉

~2
1

iω − τ−1

∫ t

0

dt′
[
e(iω−τ

−1)t′ − e2(iω−τ
−1)t′

]
= −α

2 〈2|x |1〉 〈1|x |0〉
~2

1

(iω − τ−1)
2

([
1− e(iω−τ

−1)t
]
− 1

2

[
1− e2(iω−τ

−1)t
])

= −α
2 〈2|x |1〉 〈1|x |0〉

~2
1

2 (iω − τ−1)
2

[
1− e(iω−τ

−1)t
]

and we already have that

x =

√
2mω

~
(a+ a†)

and 〈1|x |0〉 =
√

2mω
~ . We can also get

〈2|x |1〉 =

√
2mω

~
〈1|
[
aa† + a2

]
|1〉

=

√
2mω

~
〈1|
[
1 + a†a

]
|1〉 = 2

√
2mω

~

(d) Adiabatic vs. Sudden

In the limit that τ → 0, the exponential factor becomes a step function. For t > 0, we get the full αx
potential, and for t < 0, we get none. Alternatively, letting τ → 0, we get a very slow turn on, and
consequential adiabatic change.

In the adiabatic limit, the eigenvalues of H(t) change smoothly with time, and the system remains in
the same states. E.g., if it started in the ground state, it will follow that state as it changes smoothly all
the way to the end of the adiabatic change. In the sudden limit, we imagine that the last state of the initial
system acts as the initial state of the next system, and that the changeover region essentially does not affect
the system’s evolution.

The time scale is set by the energy separation of the levels of the system (i.e., ω in this case). If the time
scale is large compared to ω−1, it is adiabatic; conversely, if it is small, the sudden approximation should
hold.
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