PHYSICS 221A

Practice Final

Real Exam: Tuesday December 11th, 2012, 8am - 11am, PAB 2-434

e Please write clearly

e Print your name on every page used, including this one;

e Make clear which question and which part you are answering on each page.
e No core-dumps please !

e No books, notes, computers, or calculators are allowed during the exam;

e Please turn off all electronic devices.

e All parts of questions, a),b)c) etc., carry a weight of 5 points unless otherwise indicated.

] question \ possible points \ achieved points ‘

1. 20
2. 20
3. 20
4. 15
d. 20

| Total | 95 \




Some possibly useful formulas

e The angular momentum algebra is given by [Ji, Jo| = ihJ3, and cyclic permutations. The
ladder operators, defined by J. = J; 4+ i.Js, act as follows,

Jeljm) =M/ + 1) = mlm = 1) [j,m £ 1) (0.1)
where the states are properly normalized by (j', m'|7, m) = 0, j0pm-

e CBH-formula
e’ Be " = exp(Ad,)B (0.2)

where Ady - = [X,].

e The Pauli matrices
01 0 —3 1 0
Ux_(l 0)’ "F(i o) “Z_<0—1> (03)

e harmonic oscillator

a = 271nwh (mwX—i—iP)
al = 27"1nwh (mw X —i P) (0.4)

\)



QUESTION 1: [20 points]

A system of three (non-identical) spin 1/2 particles, whose spin operators are S, Sy, Ss,
is governed by the Hamiltonian,

2A—’ g 2B—' - —
H:?SI'SQJF?S?,(&JFSQ)

where A and B are real constants.

a) [5pts] Rewrite the Hamiltonian such that in only involves squares of S; or squares of sums
of S;’s.
b) [15pts] Calculate the energy levels and their respective degeneracies.

Note: In part b) you can quote results of representation theory and addition
of angular momentum



QUESTION 2: [20 points]
A coherent state for a single harmonic oscillator is given by

—lcl?

|C>coh:6 2

e’ | 0) (0.5)

Where | 0) is the ground state of the harmonic oscillator.
a) Show that | ¢)eon is normalized

b) Are there any values of ¢, ¢y for which two coherent states are orthogonal ? (Back up
your answer with an argument or a calculation).

c) Show that | ¢).on is an eigenstate of the lowering operator a and calculate the eigenvalue.

d) Show that

A
|<7L | C)coh’2 - Ee B (06)
and determine A and B. Here )
| n) = (ah)™ | 0) (0.7)

N

is the n-th excited state of the harmonic oscillator.



QUESTION 3: [20 points]
Consider a one dimensional particle moving in a potential with Hamiltonian
2

H= éim +V(2) (0.8)

Assume that the Hamiltonian has a discrete non-degenerate spectrum (i.e. there are only
bound states)

Hlny=E,|n), E,#E, if n#m (0.9)
a) Show that
52
[z, H], z] = - (0.10)

b) Show that the following ”sum rule” holds (it’s called that because you sum over all states).

S (B~ B [tn o | = (0.11)
m— ) [(n]z|m)| =— .
p— 2m
Hint: insert a complete set of states in the appropriate place.
c) Calculate
(n|z|m) (0.12)

for the harmonic oscillator

d) Verify the sum rule for the harmonic oscillator



QUESTION 4: [15 points]
The states | ¢(t)) and | ¢(t)) both satisfy the Schrodinger equation

L0
iho | U(0) = H | W(1)) (0.13)

Assume that the Hamiltonian H does not have any explicit time dependence. For a),b) work
in the Schrodinger picture.

a) Show that any | U(¢)) which solves (0.13) can be expressed as follows:

| U(t)) = e 71| 9(0)) (0.14)

b) At time ¢ = 0 the two states are related by

| (0)) = F | ¢(0)) (0.15)
What is the condition on the operator F' that this relation holds also for later times, i.e.
| (@) = F | 6(t)) (0.16)

c) If you transform the operator F' from the Schrodinger picture to the Heisenberg picture,
will it be time dependent ? Back up your answer by a calculation.



QUESTION 5: [20 points]

Consider the one dimensional periodic Ising chain with 3 sites
' b
H= —#(stg + 8555+ 5555) + ﬁ(Sf +85 +53) (0.17)
Where S; is the spin 1/2 operator of the i-th site (treat the spins as distinguishable).
a) Find a normalized basis of eigenstates of H.
b) Find the spectrum of H and its degeneracy

c) For b # 0 calculate the partition function

7 = tr(e”PH) (0.18)

d) Calculate the thermal expectation value of S7 + S5 4 S5 for the case b =0

< Sf+ 85 + S5 >=tr((S] + 85 + S5)e M) |0 (0.19)
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QUESTION 1: [20 points]

A system of three (non-identical) spin 1/2 particles, whose spin operators are S, Sy, S,

is governed by the Hamiltonian,
H: ?81 52"_?53 (Sl+S2)

where A and B are real constants.

a) [5pts] Rewrite the Hamiltonian such that in only involves squares of S; or squares of sums

—

of S;’s.

b) [15pts] Calculate the energy levels and their respective degeneracies.

Note: In part b) you can quote results of representation theory and addition
of angular momentum

Solution:

a) The Hamiltonian can be expressed as follows:

24~ = 2B~ .~ =
Sz - (S1+ 52)

H = ?51 - Sy + ?
A B
= ?((Sl +S9)% — S} — S3) + ﬁ((Sl + Sy + S3)* — S5 — (S1 4+ S52)%)  (0.5)

b) Following the rule of adding angular momentum, the 8 = 2 x 2 x 2 states of the three
fold tensor product decompose as follows, using the rules of addition of momentum.

Di'"? @ Dy @ P = (DY @ DY) © DY
1/2 1/2 3/2
= Dy’ ®2D5” @ Dy (0.6)
the subscript of D refers to the particle contents of the representation, where we first added
the spin of particle 1 and 2 and then afterwards the spin of particle 3. Note that the first

D%é?) and the second Dgéz) differ, the first one has S; + S2 = 0, whereas the second has
S+ 5 =1

With this decomposition, we can read off the eigenvalues of H.

A B A 1
By =5(0-3/4- 3/4)h° + 23 (3/4—3/4 - 0)h* = —32; S12=0 S =3
A B A 1
E, = ?(2 —3/4—3/4)h* + ?(3/4 —3/4—2)h? = 5 2B Su=1 Sm=g
A B A
Es = ﬁ@ —3/4—3/0)R* + ﬁ(15/4 —3/4-2)n* = T8 Sep=1 Sm= 2 (0.7)



So the spectrum and degeneracies are

_ 34

A

498

+B

deg.

NN

(0.8)



QUESTION 2: [20 points]

A coherent state for a single harmonic oscillator is given by

2
—lel

| C)eoh = €72 e’ | 0)

Where | 0) is the ground state of the harmonic oscillator.

a) Show that | ¢)eop is normalized

(0.9)

b) Are there any values of ¢;, ce for which two coherent states are orthogonal ? (Back up

your answer with an argument or a calculation).

c) Show that | ¢).n is an eigenstate of the lowering operator a and calculate the eigenvalue.

d) Show that

A"
[(n ] €)eonl® = € b
and determine A and B. Here
[ n) = ——(a')" | 0)
vn!

is the n-th excited state of the harmonic oscillator.
Solution:
a) One has

I )eonl® = conle | €)eon

e_|c|2(0 | e aeca! | 0)

e—lcl2<0 | elel® | 0)
1

In the third line we have used
ca CG/T
e 10)=[0), (0fe™ =(0]

and the BCH formula

1
XY — XTY 3[XY]

which holds if [X, Y] is a c-number. It follows

XY — oY X XY

€f|c|2 <O ’ ecaTec*ae|c|2[a,cﬁ} ‘ O>

(0.10)

(0.11)

(0.12)

(0.13)

(0.14)

(0.15)



b) One has
coh<cl | C2>coh = 8_%|Cll2_%|02|2<0 | GCTGGQGT | O>
6<0 | GCQaTec{ae@cI[a,aT} | 0>
e_%|01|2_%|cz|2_02@{ <0 | O>

gleaf? —eac (0.16)

L

The exponent is never zero, unless one takes the limit |¢1| or |co| going to infinity, hence the
coherent states for to values of ¢ are never orthogonal.

c) We can use the BCH formula

e’ Be " = exp(Ad,)B (0.17)
with A = —ca' and B = a. Using the fact that [af,a] = —1 is a c-number and all higher
commutators in exp(Ad) vanish one gets

e ae = a+[—cdl,a
= a+c (0.18)
And hence has
ac = a4+ ce | 0) (0.19)
Using this one gets
alCleon = 75 gece! | 0)

—lel? —lel?
= ce 7 ec“T|O>+e 2 e | 0)

= ¢|Ceon (0.20)
The eigenvalue is c.
d) One uses that
1 n
(n|= ﬁ@ | a (0.21)
Hence
1 n
(n ] eon = ﬁm | a”™ | €)con
1 n
= ﬁc <0 | C>coh
1 e
= e (0.22)



For the absolute value squared one obtains

IS i

[(n ] Ceanl” = =€ (0.23)

and hence
A=|cf, B=]| (0.24)



QUESTION 3: [20 points|
Consider a one dimensional particle moving in a potential with Hamiltonian
2

H=2 4 v (0.25)

2m

Assume that the Hamiltonian has a discrete non-degenerate spectrum (i.e. there are only
bound states)

Hlny=E,|n), E,#E, if n#m (0.26)
a) Show that
h2
Hl,z| = — 0.27
o H), o] = (027)
b) Show that
S (B~ B [t o | = (0.28)
m— En) [(n|x|m)| =—-— .
. 2m
Hint: insert a complete set of states in the appropriate place.
c) Calculate
(n|z|m) (0.29)
for the harmonic oscillator
d) Verify the sum rule for the harmonic oscillator
Solution:
a) We first calculate the commutator
1 9 1 ih
@, H] = 52,07 = 5 ([, plp + plz,p]) = —p (0.30)
and from this the double commutator
ih n?
H),z] =— = — 0.31
o H],2] = fp,a] = — (031)
b) The expectation value of the commutator for a eigen state | n) is then given by
n? n?
H = — = — 0.32
(|l H), 2] | n) = " | m = (032



Next insert a complete set of states 3., | n’)(n’ | in the outer commutator

(n | [le, H),2] [n) = 3 (| [z H | n)(0' |2 |n) = (n |z |n)n' | [z, H] | n))

n/

- % ((Bw = El{nlel)P = (E, — Bl (nla|n’)]?)

= 22( ) (n|z|n')|?

Equating (0.30) and (0.31) and dividing by 2 proves the sum rule.

c¢) One has
a = %aﬂ— ! aT— mwx_ !
YV oon omwhl” YV on 2mwh?
and 1
) = =) |0
Hence
h 1 1 ,
(n|x|n) = (0] a™(a+a®)(a")™ |0)

2mw\/_|\/_’|

(0.33)

(0.34)

(0.35)

_ ((0 [ @™ (ah)™ [0) + ({0 ] a”(al)"** | 0))

2mw\/_\/_

= (n—l—l Sps1n + (' +1)'(5nn+1)

2mw\/_\/_

(n+1)!

- M( V1 + 15n+17n’ + v n' + 15n7n/+1)

/ h
N <1/ (n+1 n+1n/+\/n+1‘n'nn+1

)

(0.36)

When one squares the matrix element the cross terms vanish since both conditions in the

Kronecker deltas cannot be satisfied at the same time hence using

E. — E, = hw(n' —n) (0.37)
one gets for (0.31):
ZHwZ(n’—n)L((nle)é/ + Ny ) = hj(n—l—l—n)
~ I n/ n+1 n’'+1,n m
hZ
= (0.38)

Hence the sum rule holds for the harmonic oscillator.



QUESTION 4: [15 points]
The states | ¢(t)) and | ¢(t)) both satisfy the Schrodinger equation

0
i | (D) = H | () (0.39)

Assume that the Hamiltonian H does not have any explicit time dependence. For a),b) work
in the Schrodinger picture.

a) Show that any | U(¢)) which solves (0.37) can be expressed as follows:

| U(t)) = e 711 | W(0)) (0.40)

b) At time ¢ = 0 the two states are related by

| 9(0)) = F [ 6(0)) (0.41)

Where F'is in the Schraingier picture and does not have any explicit time dependence. What
is the condition on the operator F' that this relation holds also for later times, i.e.

| (@) = F | o(t)) (0.42)
c) If you transform the operator F' from the Schrodinger picture to the Heisenberg picture,
will it be time dependent ? Give an argument for your yes/no/depends answer.
Solution:

a) Since H is not time dependent it commutes with itself at all times. Therefore

e, L0 _ip
iho [ (1)) = 27‘1&? R (0))
— He Ht | w(0))
= H| V(1)) (0.43)
b) We start by multiplying
| 4(0)) = | ¢(0)) (0.44)

from the left by e~ ##* and inserting 1 in between F and | ¢(0)).
e HI | (0)) = e R PRI | 5(0)) (0.45)

10



becomes

[ 9(8) = F(t) | o(1))

with _ _
| F(t)) = e wHtpetrtt
This expression is equal to F' if

[H,F] =0

i.e. the operator F' commutes with H and hence is a conserved quantity.

c) The operator Fy in the Heisenberg picture is defined to be
| Fy) = €+%HtF€f%Ht

Hence if [F, H] = 0 the operator Fiy = F and is time independent.

11

(0.46)

(0.47)

(0.48)

(0.49)



QUESTION 5: [20 points]

Consider the one dimensional periodic Ising chain with 3 sites

' b
H= —#(stg + 8555 + S357) + %(Sf +55+ ) (0.50)
Where S; is the spin 1 /2 operator of the i-th site (treat the spins as distinguishable).
a) Find a normalized basis of eigenstates of H.

b) Find the spectrum of H and its degeneracy

c) For b # 0 calculate the partition function
7 = tr(e”PH) (0.51)

d) Calculate the thermal expectation value of S7 4 S5 4 S5 for the case b =0
< i+ 85+ 85 >=tr((S7 + 85 + S5)e ) o (0.52)
Solution:

a) Use the basis of eigenstates of S* = 253 with

h
S*|s==1)= i§ | s = +£1) (0.53)
Since [S7, S7] = 0 for i,j = 1,2, 3 the tensor product of the | £) are eigen states of H

’ S1, S92, 83> :| 51>® | 82>® | 83>, 51,23 = +1 (054)

b) The eigenvalues of H are

1 1
E{s} = —]1(8182 + S983 + 3381) + b5(81 + So + 83) (055)
The values can easily be tabulated
{s} 5189 + S983 + 8351 (s1 4 $2+ s3) Ersy
+++ 3 3 —% 4%
b
+—+ ~1 1 142
—++ -1 1 142 (0.56)
b
_I_ - _1 —1 %J— §3b

12



Hence there are four possible eigenvalues —% + %b with degeneracy 1, i + g with degeneracy

3, 4 — & with degeneracy 3 and —% + 2 with degeneracy 1.

c¢) The trace is performed as the sum over the normalized eigenstates

Z = trePH
= ) (s1,82,53 | e P | s1, 89, 83)
{s}
= e %T]_ % + 36_’8%_53 + 36_6%+’B% —+ 6’8%+ﬂ% (057)

d) Note that a derivative of b of Z inserts the operator S; + S5 + 53 into the trace. Z is
symmetric under b — —b and hence only even powers appear in Z. Therefore the expectation
value vanishes. One can of course compute this directly.

13
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QUESTION 3: [20 points]

Consider two (distinguishable) spin 1/2 particles with Hamiltonian

H = ho(o® @0 + 00 © o)
Where o; are the Pauli-matrices.

a) Show that
0 g o®, 6 @ 0] = 0

[Ua: z My

b) Calculate the spectrum of H
c) Calculate the state at time # | ¢(¢)) with the initial condition

1 1 1 1
t = =| ] == = = ) = — ==

[wt=0) =l j=gm=3)®|j=5m=3)
Where m denotes the eigenvalue of o.
d) For the state obtained in c) Calculate

(W(t) ]| o, @0, | P(1))
Solution:
a) Using the distribution identity for the commutator
oD@, 0We®] = oW[e®,0eP] + [0, oMo P]o?

xr
oDoo®, o] + (o, oo
22'03(61)0751)09) + 2i0£1)0§2)0§:2)
= —209)02.2) + 20§1)a£2)
0

Where we used the following property of the Pauli matrices.

Oz0y = 10,, O0yOy = —10,

b) For eigenstates | £) of o, one has
oz | £)=[F), oyl t)=%i|£)

S

(2) 5@

Y

x

(0.10)

(0.11)

(0.12)

(0.13)

(0.14)



For the tensor product of two spins one has then

cMo® | +4) = | FF)

oWo® | £7) = | F£)

ood | £k) = —|FF)

of, D +F) = | FE) (0.15)

|++), E=0

|—=), E=0

S50+ =), B =2k

\LF(H )= | —+)), B =—2ho (0.16)

¢) Using the result of a) one can calculate this directly

7
| 4(t)y = exp ( — ﬁho(ag)af) + 01(11)01(}2))15) | ++)
) )
= exp ( — Ehoag)af)t) exp ( — —h—hoa?sl)ag(f)t) | ++)

= exp ( - %hoag)af)ﬂ (cos hot | ++) + isin hgt | ——))

(cos? hot + sin® hot) | +-+) + (¢ — @) sin kot cos Aot | ——)
| ++) (0.17)

Or one can also argue that | ++) is an eigenstate of H with eigenvalue 0 and that the
time evolution is therefore trivial.

d) Since | %(t)) =| ++) for all times (see c) one has

(W(t) | oo | (1))

i

(++ [ oMol [ +4)
+1(++ || ++)
1 (0.18)
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PHYSICS 221B
Final Exam — Winter 2013

Tuesday March 19th, 2013, at 3pm - 6pm

e Please write clearly

e Print your name on every page used, including this one;

e Make clear which question and which part you are answering on each page.
e No core-dumps please !

e No books, notes, computers, or calculators are allowed during the exam;

e Please turn off all electronic devices.

e Problems are not in order of difficulty.

Good Luck !

’ question ‘ possible points ‘ achieved points ‘

1. 20
2. 15
3. 15
4. 20
d. 15

’ Total \ 85 \




Some possibly useful formulas

. Harmonic oscillator for a Hamiltonian

H=P e hata s ) (0.1)
o T gmw 2% = hw(a'a 5 :
with
1 | .
a= (mwzx + ip) [a,a'] =1 (0.2)
2mhw

. The angular momentum algebra is [J!, J?] = ihJ?, and two cyclic permutations thereof.
The corresponding ladder operators are defined to be J* = J' +iJ?, and act by

TE|jym) = 1/j(G +1) —m(m£1) [jm £ 1) (0.3)

. spherical Bessel functions j;

sinx

. sinx cosx
) = HE-E (05)
. Spherial harmonics
yo — L (0.6)
0 VA
YY) = Z;COSQ (0.7)
+1 3t
Yi© = F 8?811196 (0.8)

5. Scattering formula

[e.9]

kT = Z (20 + 1)je(kr) Py(cos 0)

ikr

1 k-r /
W) = G | TR
oo 0y __
FK. k) = Z(%H)QQM Py(cos 6) (0.9)
£=0



6. phase shift for spherical symmetric potential, 1st Born approximation
5 = —k/ drr?U(r) (ji(kr))?
0

7. Possible useful integrals:

27 o
dp e = 2mJy(|al)
s 24i
/ dsin 6.1y (bsin ) = S;nb
0

where Jj is the Bessel function of the first kind.

(0.10)

(0.11)

(0.12)



QUESTION 1: [20 points]
We consider the Hamiltonian of a rigid rotator given by
72
Hy=—
° Tl

Where [ is the moment of inertia.

It is assumed that the rigid rotator has a magnetic moment and is placed in an uniform
electric field in the z-direction. Averaging over the radial dependence this amounts to adding
a perturbation

H' = —¢€pucosf

(i.e. For the problem you can neglect any radial dependence and treat the problem as one
which only depends on the angular coordinates 6 and ¢).

a) Find the spectrum and degeneracies of Hy.

b) Using the following relation

(l+1)2—m? m o 12 —m? ym
(20 +1)(20 +3) (20 +1)(20 —1) 1

cosf Y™ = \l

where Y, are the spherical harmonics in standard spherical coordinates. Calculate the
following matrix elements

(Im] cos 8]I'm)
Hint: very few of the matrix elements are nonzero.

c) Using the results of b) argue that: First, the first order contribution in perturbation theory
to the energy of the state | Im) vanishes. Second, even though the spectrum is degenerate
one can apply second order perturbation theory for the energy of the state | Im).

d) Calculate the second oder contribution to the shift in the energy for the state | im).



QUESTION 2: [15 points]

Consider the scattering of a spinless particle of mass m from a diatomic molecule. The
incoming momentum is p = hké, Assume that the molecule is much heavier than the scat-
tering particle and that there is no recoil. The two atoms in the molecule are aligned along
the y-axis and localized at y = b and y = —b. The potential the particle feels in the presence
of the molecule can be modeled by delta functions:

V(&) = a(3(y — b)d(2)d(2) + d(y + b)d(2)d(2))

a) Calculate the scattering amplitude in the first Born approximation.

b) Calculate the differential cross section from a) (Express the result in terms of the scat-
tering angles).

c) Calculate the total cross section. You can either do the integrals exactly or calculate
the total cross section to order k% (inclusive) in the small & limit.



QUESTION 3: [15 points]

A two state system is described by the following Hamiltonian
H=Hy+V(t)
With a time independent Hy and a two orthonormal basis vectors satisfying
Ho|1l)=¢|1), Hy|2)=¢€]2)
The perturbation satisfies

V()| 1) = hwre ™t [2), V(t)|2) = hwe | 1)

a) Find the eigenvalues and eigenvectors of H

b) Solve the time dependent Schrédinger equation for ¢ > 0 for a state with initial condition

| (¢ =0)) =[ 1)

c) Calculate the probability to find the system at time ¢ > 0 in the state | 2).



QUESTION 4: [20 points]

A particle is scattered by a spherical symmetric potential at energies which are low enough
so that only the phase shifts dy and §; are nonzero. (For part a)-c) treat dg, d; as given).

a) Show that the differential cross section is of the form

do
— =A+B 2
70 + Bcosf + C cos” 0

b) Determine A, B, C' in terms of the phase shifts
c¢) Calculate the total cross section in terms of A, B, C'.

d) Consider a very weak and short range potential (which behaves not worse than 1/r at
the origin). Estimate the k& dependence of dy and d; in the limit & — 0.



QUESTION 5: [15 points]

Consider the one dimensional harmonic oscillator with Hamiltonian

2
1
Hy = 2p—m + §m w?a?

At time t > 0 the following perturbation is turned on

Ht)=aze~

a) If at time ¢t < 0 the system is in its ground state (of Hy) calculate to first order in time
dependent perturbation theory the probability that the system is found at time ¢ > 0 in the
first excited state.

b) If at time ¢ < 0 the system is in the first excited state (of Hy) calculate to first order in
time dependent perturbation theory the probability that the system is found at time ¢ > 0
in the ground state.

c) For the harmonic oscillator with Hamiltonian Hy above, give an example a of an adiabatic
change and a sudden change. What is the time scale which is used to decide whether an
adiabatic or sudden change approximation is appropriate ?

If the system is in the ground state at time ¢ = 0 describe (without calculation) how the
state evolves at later times for the two cases.



PHYSICS 221B
Practice Final Exam — Winter 2013

Real Exam: Tuesday March 19th, 2013, at 3pm - 6pm

e Please write clearly

e The order of problems is not by difficulty.

e Print your name on every page used, including this one;

e Make clear which question and which part you are answering on each page.
e No core-dumps please !

e No books, notes, computers, or calculators are allowed during the exam;

e Please turn off all electronic devices.

Good Luck !!

’ question \ possible points \ achieved points ‘

1. 15
2. 15
3. 10
4. 15
d. 20

’ Total ‘ 75 ‘




Some possibly useful formulas

Electric and magnetic fields:

= e 4 ag — — —

E=-Vo——, B=VxA (0.1)
ot
e Harmonic oscillator for a Hamiltonian
2

p L 2 i1
P 1 _ - 2
o, T 5T hiw(a a—|—2) (0.2)

with
1 ) +
a= (mwz + ip) la,a'] =1 (0.3)
2mhw

The angular momentum algebra is [J!, J?] = ihJ?, and two cyclic permutations thereof.
The corresponding ladder operators are defined to be J* = J! £iJ2, and act by

TE|jym) = 1/j(G +1) —m(m£1) [jm = 1) (0.4)

Radial wave function R,; for Hydrogen like atom with V(r) = —Ze?/r.

AT
Rip(r) = (ao) 2¢ a0 (0.5)
Z\3? Zr. _zr
R = |(=— 2——)e 2 0.6
o) = (5) @-SDe % 06)
ZN\? Zr _z
= —_— - 2a
Ry (r) (2a0> \/gaoe i 0.7)
e Bohr radius
h2
G = 3 (0.8)
e Spherial harmonics
0 1
Yo = Vi (0.9)
3
YY) = Ecos@ (0.10)
vE o= F ssmeeii¢ (0.11)
T



spherical Bessel functions j,
, sin x
Jo(x) = . (0.12)
sinx  cosw
' = — 0.13
o) = - (013)
Legendre polynomials F,.
Py(x)=1, P(z)==x (0.14)
The Laplacian in spherical coordinates
? 20 I
A=~ 122~ 0.15
or2  ror  h*r2 (0.15)
Potentially useful integrals
/ dr 2"e™™ = a '7"T(n+1) (0.16)
0
ey 4t
d3$ - = TS5 017
o T = 047
00 1
dr—— = 1
[ _dwg iy T (0.18)



QUESTION 1: [1545 points]

A relativistic particle in one dimension with mass m is subject to a harmonic oscillator
potential, and governed by the following Hamiltonian,

1
H,. = \/m2c* + p2c2 — mc* + imw%g (0.19)

where [z, p| = ih.

a) Show that n the limit ¢ — oo, the Hamiltonian H, reduces to the standard non-relativistic
harmonic oscillator Hamiltonian (which will be denoted here by H.,).

b) Using perturbation theory in power of 1/c¢?, compute the leading relativistic correction
to the ground state energy of H...

c) For the general case of finite ¢ show that, in a basis where p is diagonal, the spectrum
of H. may be obtained by solving a Schrodinger-like differential equation.



QUESTION 2: [15 points]

An electron scatters off a hydrogen atom in the ground state. Ignore the effects due to
the spin and the indistinguishability of the two electrons. The potential seen by the scattered
electron is then given by,

i (_?7) (0.20)

|7 = 7]

V(r)= —% +a/d3y

where r = |Z], a is the fine structure constant, and p(Z) is the normalized probability density
of the bound electron.

a) Calculate the scattering amplitude f in the Born approximation, as a function of the
Fourier transform of p(Z).

b) Evaluate the differential cross section as a function of ¢ = ksin(6/2) for

1 2
)= —e /e 0.21
p(@) = e (0.21)

corresponding to the probability density in the ground state of the Hydrogen atom, where
a = h/(meca) is the Bohr radius.

c) Show that the total cross section is finite in the limit & — 0.



QUESTION 3: [10 points]

a) Verify that, outside the range of a short-range potential, the wave functions
1 .
ug(r,0) = —e*r
1 zkr
up(r,d) = (—+-— cos 6 (0.22)

represent outgoing s- and p-waves respectively.

b) A beam of particles represented by a plane wave with

oo

> it (20 + 1) ji(kr) Pi(cos 0) (0.23)

=0

NG

l\.’l\w

7T

is scattered by an impenetrable sphere of radius R, where kR << 1. By considering only
s and p wave components in the scattered wave, show that, to order (kR)?, the differential
cross-section for scattering at an angle 6 is of the form

do

-q = = A+ Bcost (0.24)

and compute A and B to order O(k*R?) included.



QUESTION 4: [15 points]

A hydrogen atom is located in a homogenous electric field (and vanishing magnetic field).

- Br 1
E B = e

I
o

(0.25)

Neglect spin and any fine structure corrections for the Hamiltonian of the hydrogen atom.

a) Determine the time dependent perturbation V' (¢) coming from the time dependent electric

field

b) At time ¢t = —oo the hydrogen atom is in its ground state. Calculate, to first order in
time dependent perturbation theory,the probability of finding the atom at the time ¢t = oo
in the 2p state.

c) At time ¢t = —oo the hydrogen atom is in its ground state. Calculate, to first order in
time dependent perturbation theory, the probability of finding the atom at the time ¢t = co
in the 2s state.



QUESTION 5: [20 points]

Consider the Hamiltonian for a ”spin top” with principal moments of inertia Iy, I, I3
with Hamiltonian

1[(J2 J2  J2
H=_|ZL+24+3 0.26
2<11+IQ+I3> (0.26)
Where 3 J? has eigenvalues h%j(j + 1) with j = 0,11,

a) For the special case of a symmetric top, I = I} = Iy # I3, derive all the energy levels,
and their respective degeneracies.

b) A slightly asymmetric top has [} = I + A and I, = [ — A. and assume that |A] < I,
and |A| < |I — I3]. Compute the energy eigenvalue of the j = 0 state, up to first order in A
in perturbation theory.

c) Consider the three states with j = 1, does one have to use degenerate or non degenerate
perturbation theory to calculate the energy shift to first order in A in perturbation theory
? Give an argument

d) Calculate energy shifts of the j = 1 states to first order in A.
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PHYSICS 221A
Practice Midterm — Fall 2013

Real midterm Monday Nov 4th, 2013, at 9.10am - 10.40am, in class

e Please write clearly

e Print your name on every page used, including this one;

e Make clear which question and which part you are answering on each page.
e No core-dumps please !

e No books, notes, computers, or calculators are allowed during the exam;

e Please turn off all electronic devices.

Good Luck !!

] question \ possible points \ achieved points ‘

1. 20
2. 40
3. 40

Total | 100 \




Some possibly useful formulas

e The Pauli matrices

(01 (0 —i (10
2=\ 1 0) T\ o0 %=1 0 -1

e Harmonic oscillator

e Position and momentum



QUESTION 1: Quick questions [20 points]

a) For a linear operator A how are the following expectation values related ? (1 denotes the
hermitian conjugate).

(V1 [ A ty), (s | Al | 1) (0.5)

b) State the generalized Heisenberg uncertainty principle for two hermitian observables A, B.

c) For the harmonic oscillator the energy eigenstates are given by | n) = 1/v/n!(a")™ | 0).
For which n does the matrix element

(O] [n) (0.6)

vanish 7

d) Which of these 2 x 2 matrices could be density matrices of a 2 state system 7

Do) (A G () e

3

/
O wIN

WIN =
wie O



e) Which of the following operators is a possible observable 7 (Here & and p are position
and momentum operator satisfying [z, p| = ih and a are real constant).
P,
P+ az?
eiap

= W N =
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QUESTION 2: [40 points]

Consider a physical system with a three dimensional Hilbert space spanned by the vectors

1 0 0
| U1> = 0 ; | U’2> = 1 ) | U3> = 0 (08)
0 0 1

The Hamilton operator of the system is given by

1
H=h!| O
0

S Ww o
w o O
Y
@]
Nej
S~—

Two additional observables are given by

1 00 010
A=al|l 0 0 1 |, B=b|l 1 0 0], (0.10)
010 0 01
At time t = 0 the system is in the following state:
(= 0)) = 5 L) + 5 )+ 5 | ) (011)
= =—|u —|u —|u .
\/§ 1 9 2 2 3

a) At time t = 0 we measure the energy of the system. What are the possible values one
can obtain and related probabilities 7 Calculate the expectation value and the variance of
the energy.

b) Instead of measuring the energy we measure the observable A. What are the possible
values one can obtain and what are the probabilities 7 Determine the state of the system
after the measurement of A (for each possible result of the measurment).

c) Instead of measuring anything, the system in state (0.11) evolves from time ¢ = 0 ac-
cording to the Schrodinger equation. Determine the state | 1(¢)) at time ¢ and calculate the
expectation values for A and B at time t. How do they differ ?

d)
We now measure the observable A at time ¢t. What are the possible values one can obtain
and the probabilities 7 Same question if one measures B instead at time t.
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QUESTION 3: [40 points]

A finite dimensional lattice with periodic boundary conditions has a Hilbert space spanned
by | n),n=1,2,--- N, where

At the lattice is made periodic by the identification | N + 1) =| 1). The expectation values
of the Hamiltonian are given by

(n|H[n) = ro
(n|H|n+1) = re
(n|H|n+2) = rye

Where rg, 71,72, @1, @2 are real.
a) Calculate the expectation values (n+ 1| H | n) and (n+2 | H | n)

b) Express the the Hamiltonian in term of the translation operator T" which satisfies

T|n)y=|n+1), T'|n)=|n-1), (0.13)

c) Find the eigenstates and eigenvalues of H.
d) For the position operator X the following relation holds
X |n)=an|n) (0.14)

where a is a called the lattice spacing. Show that X is hermitan and that it satisfies the

operator identity
T'XT=a+ X (0.15)

10
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221A Practice Midterm Solution

Antonio Russo
October 31, 2013

1 Quick Questions
(1a) Hermitian Conjugate
Wl Al2) = (Wl AT 1)
(1b) Heienberg Uncertainty
(AAP(ABY = 1 (1A, B[

(1c) Ladder Operators

Since % ~ a + af, this term vanishes for n # 1.

(1d) Density Matrices

The first has trace of 4/3, so no. The second has trace 1, and is hermitian, but has a negative eigenvalue (so no). The
third is not hermitian (so no). The fourth is just a projector (so yes). The last has trace 1, is hermitian, and is positive
semi-definite (so yes).

(1e) Observable

Check if they are hermitian. For (1), because Xp # pX, (1) is not an observable. The second and third are, while the
fourth is not (because of the i).

2

(2a) Energyatr=0

(E) = [i ]+ + (ol + %w}fl[i ) + 3 o) + 3 |u3>]

A i
= hw[% (ug| + %(uzl + %(z@l} [% |up) + % up) + % |u3)} = hw % + % + % = 2hw
and
(E%) = [% Gl + 5 (ol + %w] H? [% )+ o) + 3 |u3>]
= (hwy? [% Gl + 5 Gl + 5 <u3|] [% )+ 5 o) + 5 |u3>] = (|3 + 3 + 3| = S(hw’

The variance is then
(E*) —(EY* = (hw)* [5 - 4] = (hw)’
One can obtain E = fiw with probability % and E = 37w with probability i + i = %

(2b) Aatr=0

Notice that A [) = a ). We obtain a with probability 1, and we are in the same state as we were before.
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2c) >0

Notice that 1 1 |
W) = —=e ™ ur) + e Jup) + =e " |uz)

V2 2 2

This is still an eigenstate of A with eigenvalue a, so the expectation value of A is a (more generally, since [A, H] =

we would always have that values related to A would be unchanged). For B,

b —3iw b —iw b —i3w
Bly(n) = 5e gy + — 7 up) + =€ B |uz)

V2 2
so that

<B> — b e—2iwt + b eziwt + é =b |:COS(20.)t) + l:|
V2 4

22 22 4
(2d) Aand B

We have already discussed A. B has eigenvectors

Blus) = blus) and B%[IulHluz)]=b%[|u1>+luz>] and B%nuo—mm=—b%[|u1>—|u2>]

Looking at |y(#)), we see that we can have —b with probability

2

| B | 1
%e—lwt |M1> + Ee—3lwl |M2> + 56—130.)[ |M3>]

2

‘% G| = (o]

1 2

R s

—ce 1
2 2V2 4 V2
1 1 . 1 1 2 1
=—-(1- —e‘2’“”] [1 - —ez’”’] = - [1 — — cosQRuwt) + =
gl V2 oA I R 2

And we avoid doing any more work and conclude that we can get b with probability

_ —3iwt —2iwt

1 2 1
1- Z [1 - $COS(2Q)Z‘)+ 5

3

‘We use the shorthand
A,‘ = rie’“"

(3a)

(n+ 1 Hiny = [l H n+ D] = KnlHln+ D] = A} = re™
and .

(n+2/Hny = [ H' In+2)| = [ HIn+2)]" = A3 = rye™
(3b)

H = A() +A1T_1 +ATT1 +A2T_2 +A§T2

2

09
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(3¢)

Suppose that

ky= > e " n)

n

(where k = 22, for some 0 < m < N). Then,

Thy= > e™n+1)y=e* > e n)

n n

then,
HIky = [Ag + Are™ + Aje™ + Aye ™ + A3e™™ | k) = [Ag + 2ry cos(a - k) + 2r; cos(az — 2k)] k)
(3d)
(m| X" ny = (n X |m)]" = (nlam|m)]* = amb,y,

which is plainly the same as
(m| X |n) = {m|an|n) = and,,

Since this holds for all n, X is hermitian. Next,
T'XT Iy =T XIn+ 1) =an+ DT n+1)=@0+1Dn)=aln) +ann) = (a+ X)|n)

s0, because n is arbitrary, we have the claim.
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Some possibly useful formulas

e The Pauli matrices

e Position and momentum



QUESTION 1: Quick questions [20 points]

a) For a three state system and an orthonormal basis (i | j) = &;;,4,7 = 1,2,3. Which of
the following operators are observables ?

O1 = 26 | 1)(1] +2¢0 | 2)(2 | +3€0 | 3)(3 | (0.5)
Oz = € |1)(2] - |2)(1] (0.6)
O3 = e | 1)(1]—€|2)(3] —e1|3)(2] (0.7)

G A Oy oe hamabian & obsevables

[

b) True or false in general ? For two operators commute, i.e. [A, B] =0: If | a) is an
eigenvector of A, it is automatically an eigenvector of B.

N M ww@;{» Q)(@W\,é& %3 Lweﬁ&%

T () e Ca) e

L

e
\ 0
\

c) What equation does an operator O satisfy if it is 1. a projector, 2. a hermitian operator,
3. a unitary operator ?

L. @’7:: &)
L @F o o <hlol= i Ve
5. 07-090% &~ 0'0=00-4

3



d) For a two state system describe by a density matrix

(1)

Calculate the expectation value of the operator S; = %Fwi,i = z,Y, z where o; are the Pauli
matrices.

e) State briefly (following the Copenhagen interpretation), the two ways a wave function
can evolve in time.

i L v Prdon va Sc&f\vgc‘,@u/méﬂ @Wa%ﬁw

-

) %ﬂ %% Wf)‘i {”] | “‘g‘;j no wagmw\i
2. KQ‘A‘“h L@ @) e @v\@ —
Mtwum Obeyvalr R &OH’W’ tw\mﬁ&k &
4y —p Pla) W)

4 } -
%@(m%}, @'V@&Q@%W Wi@ ﬁv%mg\@@ag A

4
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QUESTION 2: [40 points]

a) Consider the operator
T(a) = exp(—iaP/h) (0.9)

Where a is a constant and P is the momentum operator Show that

T ) X T(a) =z +a

+A_ A
CxP)=ik Use € Be - 2xp Adp B

(0.10)

P/ —ia¥
Gkrﬂ h,x e ”1; (\45 dJﬁqu»)<

:x%‘\%EP/Xj

::X.\.O(

b) Show that T'(a) is unitary and show that T(a) has eigenvalues of of the form e*®* where
¢ is real (You can assume that P is hermitian).

iabPf  —iakh
Ty Ted- € e h 4 “’“‘”m

wabl idset]
S awa ?w T | “‘) -l W”+“7

LY TNV PIYD =
YT = <L P Ty W = »F
own % u\;\v L 6

o1y A
= A T\ 1) = A T ;\ei&



Pk oy

c) Consider the Hamiltonian which is periodic under shifts by a —

2 oo a
H= f—m + > v{-na) (0.11)

Here you can assume that V(z) goes exponentially fast to zero as |z| — oo (This
assumption makes the sum over n convergent). You can also assume that V' (z) can be
expanded in a power series.

Prove that T(a) commutes with H.

Vo (x) = Zchx“’

T X T = X+ d J{
Tlr)(wT - T+X ‘{T+ TWXT’

- TTveOT = 2 G (xe)”
- Vix+a)
T ;V(\('V\O\WTE ETV(X"\?Q —na)

/

7o 0
= T \/(x-(w )
wi
7

T-i"PQT_: %2 h/
w  T'HT =t w HT=THe (TRl



d) It follows from the results in part c) that the Hamiltonian H and T'(a) can be
diagonalized simultaneously. You can assume that there are eigenstates | E, k) which satisfy

H|E,kY = E|Ek) (0.12)
T(a) | E,k) = e *|E k) (0.13)

For the wave functions in position space define the following combination
u(z) = (z | E, k)e ™" (0.14)

Show that u(x) is a periodic function with period a, i.e.

uk(z + a) = ug(z) (0.15)

This is the Bloch’s theorem for periodic potentials (i.e. an energy eigenstate can be written
as a Bloch wave times a periodic function).

—
Uy (X +a) = {X+a\ER> @ Pt a)

) ERYCTTN
= LEA| x+ @1\7»#( e
18 (x4a)
CCEANT XY e
ihx  —iha

‘ 'T+ \E,Q\§ @j e

1]

<X

— \)%{q -»60\)( 1y
o <y \EAY- £ e F

= MM()(X

i — g
E/(;Si(— T;Tﬁ\ ‘ﬁm‘baﬂw} = Q 8 % t g QK\
Q _
0 THREX - Q‘ MERS



QUESTION 3: [40 points]
a) For the ladder operators

1 1
— ; T — .
a= m(mwX—i—zP), a' = m(mwX iP), (0.16)
Using the basic commutation relation for X and P, calculate
[a', a] (0.17)
?
. P
) 1 = ____l_—— (\wai%P /WM’X
a’ 4 wb
7 wm

,_kamw&[mﬁ}

2 o
, \
— WWQXP/Y‘}>

11



b) Express the following operators in terms of a and af

1. X
2. P
3. X?
4. P?
\ X+ P
0= s X+ P
Z’w»wk?(
a%_z f-\—ﬂ (Mw\("”{?\
7%@\)@4




c¢) Calculate the expectation value of X and P for the system in the energy eigenstate
| 1) =a'"]0)

<l ‘X \\> = O be conr
= Xxdlod

| ¥
— <old E%(awﬂ at 1)

zda’ a*r ey aolold 10

Gla At 1O - golu’ (v
1P <oda T at (0

_ _\[wed @mmﬂaww@)
- 2

13



d) Calculate the Expectation value for X2 and P? for the system in the energy eigenstate
| 1) = a' | 0) and check wether the Heisenberg uncertainty relation for X and P is

saturated for the state | 1) = af | 0).

N XYy

DY
=¢old 2%; (axatt AY10D cﬁaf haal” ox 1o
4 T 0
;;9-; 40\ U(TA@A#Qﬂ)ﬁ ‘5
Tww
= fgﬁ(o\(}\ @N“”H\B ot 107

\ TR
ax)iagps xRS o
2 % = é@z Uﬂ@’%f
ﬁf\»f'fZi | TX,P] \\53 = i <\ 5 5;?:%@4
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Some possibly useful formulas

e The angular momentum algebra is given by [J;, Jo] = ihJ3, and cyclic permutations. The
ladder operators, defined by Ji. = J; 4+ i.Js, act as follows,

Jeljm) = /i + 1) = mlm = 1) [j,m £ 1) (0.1)
where the states are properly normalized by (j', m'|7, m) = 0, j0pm-

e "little” CBH-formula
e’ Be " = exp(Ad,)B (0.2)

where Ady - = [X,].

e The Pauli matrices
01 0 —3 1 0
Ux_(l 0)’ "F(i o) “Z_<0—1> (03)

e harmonic oscillator

1
a = (mw X +1 P)
2mwh
1
-i- o .
a' = mwX —1 P 0.4
Qm(,uh( ) (04)
e Position/momentum

(X, P] =ih (0.5)

\)



QUESTION 1: Short questions [40 points|

a) For an operator A (with no explicit time dependence) in the Heisenberg picture, what is
the condition it has to satisfy for it to be conserved, i.e.

d
ZA=0 (0.6)

b) If you add a two angular momenta with (J;)2 = 30A2 and (J;)? = 20h%, what are the
possible values of the total angular momentum squared 7

c) A gauge transformation is given by
A A+V0, ey (0.7)

Where 0(x) is an arbitrary function of Z. Show that the covariant derivative of the wave
function

(= ihV — ed )i() (0.8)

transforms in the same way as .



d) State the Ehrenfest theorem.

e) For a particle of spin 1/2 moving in a three dimensional central potential, list a maximal
set of commuting observables.

f) For a matrix U in SU(N) the matrix has to satisfy
UU=1, det(U)=1 (0.9)
What does this imply for the infentisimal generator T 7

U=1+4ieT+o(e?) (0.10)



g) You have three observables A, B, C' they satisfy
[A,B] =0, [A,C] =0 (0.11)

what can you say about [A, [B,C]] 7 (Justify your answer).

h) For the classical quantity z%p? write down two possible forms of the corresponding
observable according to the correspondence principle.



QUESTION 2: [40 points]

A system of three (non-identical) spin 1/2 particles, whose spin operators are 51, 52, 53, is
governed by the Hamiltonian,

24~ -~ 2B~ - -
HZﬁSl'SQ—F?Sg'(Sl-FSQ) (012)

where A and B are real constants.

a) Show that S+ S, and >ic123 S; bothe satisfy the commutation relation of
spin/angular momentum.

b) What are the possible eigenvalues that (5?1 + 52)2 and (671 + S5+ 5?3)2 can take ?

¢) [10pts] Rewrite the Hamiltonian such that in only involves squares of S; or squares of

=

sums of S;’s.

d) [15pts] Calculate the energy levels and their respective degeneracies.

Note: In part d) you can quote results of representation theory and addition of
angular momentum



QUESTION 2: [40 points]
A coherent state for a single harmonic oscillator is given by

—lcl?

|C>coh:6 2

e’ | 0) (0.13)

Where | 0) is the ground state of the harmonic oscillator.
a) Show that | ¢)eon is normalized

b) Are there any values of ¢, ¢y for which two coherent states are orthogonal ? (Back up
your answer with an argument or a calculation).

c) Show that | ¢).on is an eigenstate of the lowering operator a and calculate the eigenvalue.

d) Show that

Ar
[ | )eon]* = —re™” (0.14)
and determine A and B. Here )
| n) = (ah)™ | 0) (0.15)

N

is the n-th excited state of the harmonic oscillator.



QUESTION 3: [40 points]

Consider a one dimensional particle moving in a potential with Hamiltonian
H=2 4 v (0.16)
m

Assume that the Hamiltonian has a discrete non-degenerate spectrum (i.e. there are only
bound states)

Hlny=E,|n), E,#E, if n#m (0.17)
a) Show that
52
[z, H], z] = - (0.18)

b) Show that the following ”sum rule” holds (it’s called that because you sum over all
states).

S (= ) |t 2 ) = 0.19)
m— Ey) [(n]xz|m)| =— .
p 2m
Hint: insert a complete set of states in the appropriate place.
c) Calculate
(n|x|m) (0.20)

for the harmonic oscillator

d) Verify the sum rule for the harmonic oscillator



QUESTION 4: [40 points]

Consider two (distinguishable) spin 1/2 particles with Hamiltonian
H = hy (ag) ®c? + 0?51) ® 0'?52))

Where o; are the Pauli-matrices.

a) Show that
eV @ al?, crzgl) ® 01(12)] =0
b) Calculate the spectrum of H
c) Calculate the state at time ¢ | ¥(¢)) with the initial condition

1>®‘, 1 1>
m = — = —.m = —
Y R

N | —

Where m denotes the eigenvalue of ..

d) For the state obtained in ¢) Calculate

(W) [0 @ 0. [9(#))

(0.21)

(0.22)

(0.23)

(0.24)
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Antonio Russo
December 3, 2013

1 Short Questions

(1a) Conserved Observable

A must commute with H,i.e.,[A,H] =0

(1b) Addition of Angular Momentum
We have

J)? =30 =5-6-1"=ji(ji+ DR* so ji =5

and

(L) =20/ =4-5-1% = 21+ DI®> so j,=4

The sum can will have anywhere from |j; — jo| = 1 to j; + j» =9, or J? between 272 and 9072.

(1c) Gauge Transformation
Under the gauge transformation,

(it = Ay — [~ - eA'] o’ = [-in¥ -

-

e
= [—e (X+ V@)] ei%zﬁ —ih [e"fﬁﬁzﬁ + i%

(1d) Ehrenfest Theorem

1
0 (A)y = — (A H])y +(0,A),

(1e) Spin 1/2 Maximal Set of commuting oberservables

Here is one such list: py, py, p., S, (and, if you like, the Casimir operator S ).

(1f) Infinitesimal Generator of Unitary Operator

If UT = U!, the tayor expansions
U'=1-ieT" + o(€?)

and
U™ =1-ieT + o(e?)

are equal. Therefore 7 = T is hermitian.

(1g) Three Commutators

[A,[B,C]] =[A,BC]-[A,CB]=B[A,C]+[A,B]C-C[A,B]-[A,C]B=0

(1h) Corresponding Quantum Operator
All symmetric combinations of x and p are candidate quantum operators.

x2p2 + pzxz, ixzp2 — ipzxz, xpzx, px2p, Xpxp + pxpx,

ixXpxp —ipxpx
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2 Three Spins

(2a) Commutator

Since the commutators are linear, this follows immediately.

(2b) Eigenvalues
Put flg = §1 +§2 and J' = ﬂz + §3. Because
D'?¢D'? =D’ @ D!

J12 can be either 0 or 1. Similarly, because

Antonio Russo

(D(l/z) ®D(1/2)) ®D(1/2) (D(O) ® D(l)) ®D(1/2) (D(O) ®D(l/2)) (D(llz) ®D(31/2))

(1/2) (1/2) (3/2)
- D/lz =0 ® D]lZ 1 ® Dj12=1

J can be either 1/2 or 3/2. The possible eigenvalues are therefore
3,15

Jh, =020 and J? =i,

g2
4 4

(we will use the full decomposition we found here in part (d).

(2¢) Rewritten

Note that
J3,=82428,-8,+52 sothat §1~§2:%[]122_5§_5ﬂ
and
J? =T +2J1-S3+53  sothat §3-f12=%[1’2_152_55]
It follows that
H= o[y -53-83]+ o[22y - 53]

or, collecting terms

1 2 A 2 2 B 2 1 72
H:ﬁJIZ[A—B]—ﬁ[SZ+S] —S3+5I7B

1, Al3., 3.,] B3, 1,

h2112[A B] - [Zh +Zh —ﬁzh +ﬁJ B

1, 1 b 3.3

= —IhIA-Bl+ 5 J?B-SA+ B

(2d) Energies

2

The decomposition we performed in part (b) shows that j> and jfz are good quantum numbers. Indeed, when j' = 1/2,

J=0,1.Forly) =|j = 1/2, ji =0, j, = £1/2) (the 2 states)

3 3
Hll//>—( B—§A+—B)|l//> = [B—AllW)
For |y) = L J = J_r1/2> ( the 2 states)
3 3 3 1
H|W>=(2(A—B)+ZB—§A+ZB)I!P>= i[A—B]IIM

When j' = 3/2, ji; = 1, and for (the 4 states) |y¢) = |j’ =3/2,ju=1,j,= 13/2,11/2>,

Hp) = (Z(A B)+EB—§A

> )Il#)— [A + Bl )
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3 Coherent State
(3a) Normalization

—lel? 1 ne t\n —|c|? 1 n
e = P Y e 0) = Y )

- - n!

so that |
—lcl? 2
<C|coh |C>coh =e i Z mlCI "=1
- !

(3b) Orthogonality

) =(lerP+Hea)/2 1o —(le1P+le2l?) /242
(Clloon I€2)eon = €01 +2/ Z ;(CICZ)n = o~ (eriP+eaP) /24212
— n!

To make this quantity vanish, the real part of —(|c;|* +|c2|*)/2 + &1 ¢, must be infinite and negative, which is not possible
for finite ¢; and c5.

(3c) Eigenstate

—lcf? 1 n —lcf? \/ﬁ n
aleeon = €712 )| —=caln) = T ) e in = 1) = cleden
— Vn!

— Vn!

(3d) Decomposition
We did this already in part (a),

—|c|? 1 n
Knle)eonl* = €7 ;acﬁ)

4 Sum Rule

(4a) Commutation

First, notice that [x, V(x)] = 0. Therefore,

1
[x. H] = 5 ([x.plp + plx. p) = inL
m m

so that
2

[[x, H],x] = ihl[p, x] = ihl(—ih) = h—
m m m

(4b) The Sum Rule

Taking part (a) as a hint, we notice that

hZ
— =|[x,H],x] =[xH - Hx,x] = xHx — Hx*> — x*H + xHx = 2xHx — Hx* — X*H
m

or
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Using this,

D En = E) nl xlm) = > nl xlm) (B = Ey) (ml x|n) = (] x

m

D (En = Ey)m) <m|} xIn)

> im) <m|} x|n)

X2E, + E,x*
— |

= <HIX[Z(H — Ey)|m) <mI]X|n> = (n|x(H - E,)

m

= (n|x(H — E,)x|n) = {(n| (xHx - sz,l) |n) = (n| (xHx - 5

x*H + Hx? K2 K2
= H _————— = _— = —
(n| (x x > )In> (n| o ) o
(4c) Harmonic Oscillator
First, recall that x = /5 ,Zw (a + aT). It follows that

h
(lxlm) = 5 [ Vi + 16, e1 + VimBye1]
2mw

(4d) Harmonic Oscillator Sum Rule

2
[ h —
% [ m+ 16n,m+1 + M(Srﬁl,m]

‘2

D (En = E) [inl xIm) = heo D (n = m)

2

hZ
= %'Zl(n_m”%én,m#—l + Vm + 15n+l,m %

2
= D -ml=

S Two Distinguishable 1/2 Spin Particles

(5a) Commutator
[0'9) ® 0';2), o';l) ® 0';2)] = 0'5(1)0';1) ® 0';2)0';2) - 0';1)0'9) ® 0'§,2)0'§2) = —0'21) ® 0'22) + 0'21) ® O'(ZZ) =0

(5b) Spectrum

Just writing the terms down,

0 0 0 1 0 0 0 (=) (-0 0 0 O
£_00'x+0—i0'y_0010+0 0 (=i)-i 0_2001
hohi o, 0 ioy 0|10 1 0O 0 i-(-0) 0 0| 01 0

1 0 0 O i-i 0 0 0 0 0 O
So, we have two 0 energies (|++)), and +2hoh (\% [[+=) £ |-+)D
(5¢)

This state is
Wyt =0)) = [++)

(=N el Ne)

4

But, this is a zero energy eigenstate. So its time evolution is trivial (constant). We don’t bother writing it down again.

(3d)

This state is also an eigenstate of o, ® o=, with eigenvalue 7, and hence this is also the expectation value.
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e Please write clearly, neat and logical presentation will be rewarded !

e Please write down your name and UID on the front page, if you separate sheets please
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e Make clear which question and which part you are answering on extra each page
e No core-dumps please !
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e All parts of questions, a),b)c) etc., carry equal weight unless otherwise indicated.

Good Luck !!
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1. 40
2. 40
3. 40
4. 40
d. 40

l Total I 200 ]




Some possibly useful formulas

e The angular momentum algebra is given by [J;, Jo] = thJ3, and cyclic permutations. The

ladder operators, defined by Jy = J; £ iJ,, act as follows,

Jeljm) = m/3(j +1) — m(m £ 1) |j,m £ 1)
where the states are properly normalized by (j',m’|j, m) = 8, j0m,m-

e "little” CBH-formula
eABe™* = exp(Ads)B

where Adx - = [X].
e "big” CBH-formula

eAeB — oATB+3[ABl+1;5(A A Bll-15(B,[A,B]l+-

where the dots denote nested commutators of A, B of order 4 and higher.

e The Pauli matrices

e harmonic oscillator

1

= mwX +1P
¢ V2mwh ( )
1
al = (mw X - iP)
2mwh
e Position/momentum
[X, P) =1ih

\)

(0.1)

(0.4)

(0.6)



QUESTION 1: Short questions [40 points]

=2
a) If you add two spins j; and j» with eigenvalues of J; being h%5:(ji + 1), i = 1,2 what are
the possible values of j; for the total spin ? (state the result, no derivation necessary).

\M’@% \D”‘%"»Z/ \)|+J Y/ %\Sa’;)z‘

b) If an operator is both unitary and hermitian, what are its possible eigenvalues ? (give a
brief argument)

utu =74 anitory
U,, - M’% va%m

2 _ /L 2) QA%JQM\/&QM‘U? &

c¢) You have three observables A, B, C they satisfy
[A, B] =0, [A4,C) =0 (0.7)

what can you say about [A4, [B Cl] 7 (Justify your answer)

LA+ M}ﬁAﬂ% k¢, E‘A Ril<o Jaeol \‘M;\J\/
D IALRCT -




d) State the Heisenberg uncertainty relation for general observables A, B and a general state

| ).

A?A A\%B > L[ <ITA, I

e) What condition (involving the Hamiltonian) must an observable to satisfy to be conserved
?

o, Hl=0

f) For a ladder operators of angular momentum show the following identities

JoJ_ = (J)? = J} + hJs (0.8)
- (3,71)[E,-1)
- ‘3?*33«& s(mf‘wﬁ
A 112,30

ﬁﬁ\fvmg C s 132151



g) An N x N hermitian matrix P is an projector, i.e. P? = P, also the trace of P is
tr(P) = 3. What is the dimension of the space the projector P projects on (i.e. what is the
rank of the projection matrix)?

P cCawn LQ dﬂ“%muﬁ&b}‘
A w bP=-u => u-3
P= (v,

@Hu@m@’% SPW& [N 3

h) for a three state system an observable and the state of the system are given by

100 A
A=a|l 001}, |op=—0|1 (0.9)
(224) -a(}

After you measure A and get —a and a result, what is the new state of the system after the
measurement 7 (You do not need to normalize the state).

| D

“huoke o Egpveton - ()

| ‘ (Q
N@W S\?L&ﬁ v l—ZT: _j‘
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QUESTION 2: [40 points] Consider a two-state system, say spin, with Hamiltonian

0 1
HS—ZwSI—hw(l 0)

Here S; . = goz,y,z where o; are the Pauli matrices. At time ¢ = 0, the system is in the

eigenstate of S, with eigenvalue +-§~h.

a) If you were to measure S, at time t=0, what values would you get and what are the
associated probabilities ?

b) (The rest of the problem is independent of a), i.e. no measurement has taken place).
Compute the evolution operator U (t) for this system.

c) Evaluate the probability as a function of time ¢, called P(t), for the system to be measured
at time ¢ in the eigenstate of S, with eigenvalue —%h.

d) Find the form of the operator S,(¢) in the Heisenberg picture (assuming at ¢t = 0 Heisen-
berg and Schrodinger picture agree).

. !
d) Sl‘c{b.ajf 1(=0 %\’5(\7’"" (o)

0l 1 @>
57=%(\o> npslitis 15,40 < (“z(«\
g)f">i - (Q);
= %)= J[Z ‘gv‘*?‘*}\i—z 1Sy 2
.Dsyac)gi whl P= Z.\:
g\/"% wth P=- Y
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QUESTION 3: [40 points]

Let a+ be two independent harmonic oscillator lowering operators, satisfying

lat,a-]= [a+aa't-] = [ajl-’a'—] = [al’af—] =0
[ay,al] =[a_,al] =1
We define the operators
1 h
N = 5( fay +alal) J, = E(aLaJr —ala.) Ji = halaz

a) Show that J,, J1 satisfy the angular momentum commutation relations, i.e.

[Ty, J_] = 2hJ,, [J,, Ju] = +hJy (0.10)

b) Show that

[J%,J,] =0

c) Show that the spin % quantum system is the eigenspace of N with eigenvalue 1/2.

d) Express the vectors in the the Hilbert space of the two harmonic oscillators with N <1
in terms of eigenstates of J,, J2. .

Hint: For part ¢) and d) you can use without proof the identity: J* = h2N(N + 1).

a) (9.2 = EZ\_Z La/q,-ata afa]

2 + & .,
= % ( a-\;%[ %I q*,‘ }Qv - a{l f@ejjzaé‘:\) QL«B

- %ﬁ (o + afa ) = 4,

L +
sz’-j"-] = % la‘:}q‘k‘: Q:LCL}I a_ %&-]
¢
;lfll[ Qj tqﬁ' Gilay, — QJ’EQ@* a- j) %j
Z

e
-

o %L (qj%f“;}ae&) <= %o
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[j‘;,j_“] = )ﬁ)z [q;a' l Q_’rq;]
= 1,2 <q+ Ca_ at)a,+at tatale]
= )Gl@;‘“q_’.,,qfq‘) - ijl

b) (3’11 Jz:): O

-

O = 321—\- j+j__ g/{ﬁ jZ

Zﬁ?, :Jj = FDJ_JZX
= 2, 1300+ [3.2))-
:;lf)jiyj_ -’ck,j_,,j, =0

m
) I wmind- ({-;% 0@t 1>
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QUESTION 4: [40 points]

A coherent state for a single harmonic oscillator is given by
| C)eon = Ce®' | 0) (0.11)
Where | 0) is the ground state of the harmonic oscillator and C is a normalization constant.
a) Show that | ¢)eon is normalized to 1 for C = e~ld*/2,

b) Calculate a | ¢)con and the expectation value con{(c | N | ¢)con, Where N is the number
operator of the harmonic oscillator.

c¢) Calculate the expectation value of the position operator z and momentum operator p, for
the state | ¢)con

d) Consider the system which at time ¢ = 0 is in the state | ¢g), calculate the expectation
value of x at time ¢: (z); and the expectation value of p at time ¢: (p), and show that they

satisfy p
(p)e = m {2y (0.12)

@) <Cley -l <o le T Mo SN oY

Uee BCH 4 TAKTT= Covs +

A-&B"l/TAuUT
eAeeﬂ e e-

QEQA:' €A+8 ~% AR

N
B [A8]
=D eAeezégAQ | 2 l’i
lcl tga'l

2 ,
<C\CH)= \C\W <oloy - € @‘dj“'L
._\c\ |

hom o ‘i C\ = o (7€

15
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QUESTION 5: [40 points]

Consider a system of two spin 1/2 particles, labelled a and b, with respective spin op-
erators S, and S,. We ignore all quantum numbers but those of spin. The eigenstates of
(5,)? and (S,), are labelled my | jo,ms) and he eigenstates of (S;)2 and (S,), are labelled
my | by mb)

a) For the total spin S =5, + S,, what are the possible eigenvalues of the (§tot)2 and
(Stot). which can appear (They are labelled by the numbers j,m and call the associated
eigenstates | 7, m)).

b) Find the expression for the states | j,m) in terms of | mg, mp).
c¢) Find the expectation value for (S,), for the states | 7, m)

d) The particles are in the state | ) of zero total angular momentum, which we consider
normalized to (¢¥|¢) = 1.

Let 7, and 7, be two independent unit vectors. Compute the expectation value of the
product of the spin operators projected onto the directions 7, and 7, respectively, namely,

(W | (7 - Sa) (7 - S}) | ) (0.13)

19




- extra space -

2 D= Aw=1> = W=, we= /D
‘ AN
\)@ I W%C)) = %{(\ m=1/ = =4 ‘?'BW“"J/;% oy, =+ A&/>

]j%,w%,/\) B D A
/>>
1y=0, m=eD = T“,;-:Q /TRl /D e
\ | p
C> <J7/‘\,W74\‘&(SOJ—Z |)f4‘w,‘-43: —i
4)‘:4‘ «‘Mf"'l‘) Saq | 1=w=D = ﬁ%

20



- extra space -

OO uﬁ””" (#7 =2, =\ AT

%wf‘w.
sl umtes v By § Ay vk w0 nell
iM\/@Awum"ff;‘
Bosudt- W\Ms%" be tff€ % g@)@\’m
A
C %@" m%
WA A
whae C \s Wrr}@;c@wa{w% @é= N a AL

ﬂf’)\

A D
X2
. AN
Sar St €757 \ >

,t,L
- (C=-— Z

21




- extra space -

22



Name: UID:

PHYSICS 221B
Practice Midterm Exam — Winter 2014

Real Exam: Monday Feb 3rd in class

e Please write clearly

e The order of problems is not by difficulty.

e Print your name on every page used, including this one;

e Make clear which question and which part you are answering on each page.
e No core-dumps please !

e No books, notes, computers, or calculators are allowed during the exam;

e Please turn off all electronic devices.

Good Luck !!

’ question \ possible points \ achieved points ‘

1. 30
2. 40
3. 40

Total 110




Some possibly useful formulas

e Harmonic oscillator for a Hamiltonian

P Lo 9o 1
H = o + gmwa” = hw(ata + 5) (0.1)
with
1 - i
a= (mwzx + ip) la,a'] =1 (0.2)
2mhw

e The angular momentum algebra is [J!, J?] = ihJ?, and two cyclic permutations
thereof. The corresponding ladder operators are defined to be J* = J' +4.J2, and act
by

TE|jym) = 1/j(G +1) —m(m£1)[jm £ 1) (0.3)

e Spherial harmonics

1
YY) = — 0.4
0 v (0.4)
YY) = j;rcostheta (0.5)

Y = F 3 sin getio (0.6)

8w



QUESTION 1: [30pts]

Consider a pair of harmonic oscillators with unperturbed Hamiltonian

1 1
hwl(aial + 5) + hw2(a£a2 + 5) (0.7)
where w; < wy < 2w;. A perturbation is added
H, = e(alalay + abayay) (0.8)

a) Find the three lowest eigenstates of the unperturbed Hamiltonian.
b) Show that two of the three lowest levels are exact eigenstates of Hy + H;.

c) Calculate the first non vanishing correction to the energy and the state for the third.



QUESTION 2: [40 points]

A relativistic particle in one dimension with mass m is subject to a harmonic oscillator
potential, and governed by the following Hamiltonian,

1
H. = \/m2c* + p2c2 — mc® + imw%g (0.9)

where [z, p| = ih.

a) Show that n the limit ¢ — oo, the Hamiltonian H. reduces to the standard
non-relativistic harmonic oscillator Hamiltonian (which will be denoted here by H).

b) Using perturbation theory in power of 1/c?, compute the leading relativistic correction
to the ground state energy of H...

c) For the general case of finite ¢ show that, in a basis where p is diagonal, the spectrum
of H. may be obtained by solving a Schrodinger-like differential equation.

d) Estimate the ground state energy using the variational method for the equation in c).



QUESTION 3: [40 points]

We consider the Hamiltonian of a rigid rotator given by

E2

Hy = —
DY

(0.10)
Where [ is the moment of inertia.

It is assumed that the rigid rotator has a magnetic moment and is placed in an uniform
electric field in the z-direction. Averaging over the radial dependence this amounts to

adding a perturbation
H' = —epcost (0.11)

(i.e. For the problem you can neglect any radial dependence and treat the problem as one
which only depends on the angular coordinates 6 and ¢).

a) Find the spectrum and degeneracies of Hy.

b) Using the following relation

(l+1)2—m? 12 —m?
V= Y Yy 12
cos6 Y, J QI nE+3) PN @ nei—1) (0.12)

where Y," are the spherical harmonics in standard spherical coordinatesl, Calculate the
following matrix elements
(Im] cos 8|I'm') (0.13)

Hint: very few of the matrix elements are nonzero.

c) Using the results of b) argue that: First, the first order contribution in perturbation
theory to the energy of the state | lm) vanishes. Second, even though the spectrum is
degenerate one can apply second order perturbation theory

d) Calculate the second oder contribution to the shift in the energy for the state | Im).



Quantum Mechanics: 221B, Practice Midterm

Antonio Russo
Real Exam: February 3, 2014

1 Two SHOs

H = hwi (N1 +1/2) + hwy(No +1/2) and  Hy = e(alalay + alaay)

(a) Unperturbed States
The lowest eigenstates of H are
h
|OO> with Eyg = 5 [w1 + OJQ)

and "
‘10) with E10 = 5 [3OJ1 + WQ)

and 5
‘01) with E01 = 5 [W1 + 3WQ)

(b) Lowest Levels

Notice that
H1100) = e(alalay + alayay) [00) = 0

and
Hy 10) = e(alalay + alaiay) [10) = 0

(so these states are unaffected).

(c) Lowest correction for [10)

Notice that .
Hy|01) = e(a{a}ag + agalal) |01) = €]20)

It follows that the first order correction to the energy level is zero. The second order correction is (noticing

there is no degeneracy)
1 €2

E(g(l)) _ E;g) o h [WQ — 2W1]

AES? =€

2 Relativistic SHO
(a) Hy

2
p
m2c

1+

chmc2 5~

2 4
. b 1 p 1 2.2
T om  Smic "W

As ¢ — oo, we just get the SHO Hamiltonian.



Quantum Mechanics: 221B, Practice Midterm Antonio Russo 2

(b) Leading Correction
Notice that

2
= —9 _
b mhw
so that . 5 5
1 p hw 4
— t 1 _ o
Hy=hw(a'a+1/2) and H; S = 3amel (a—a)
(notice that there is no degeneracy). The first order energy shift is
h2w?
AEW = (0| H, |0) = ———— (0] (a — a")* |0
(O H110) =~ (0] (@ — ') 0)

The final product has 2* = 16 terms, but vanishes unless the leftmost and rightmost terms are a and af,
respectively. Furthermore, the number of a and a' must be equal. This leaves us with just two terms:

(0 (a—a®)*|0) = (0] a [aa’ + a'a] a'|0) = (0] a [1 + 2a'a] a' |0)
= (0| [aa" + 2aa’aa’] [0) = (0] [3aa'] |0) =3

so that

AE(l) . 3h2w2
T 32me?
(c) Momentum Basis
Put
b(p) = (plv)
so that ) )
0} =116) = [ oo o) ol do = o [ 616} do
Then,
1
510 = 5 [ polo) ) do
and )
210) = 5 [ V0 |8} do

Thus,

1o)== [ |V 7 - et = S 00,2 o) )
Putting 4 = —L5 and V(p) = y/m2c* + p2c? — mc?,
1 h?
110 =5 [ [-5:08+ Vi o))

T o

which is “Schrodinger-like”.

3 Disturbed Rigid Rotator

L2

=57 and H' = —eucosf

Hy

(a) Ho
We recall the eigenvalues of L?:
1

where [ € Z with [ > 0, and m € Z with |m| <1



Quantum Mechanics: 221B, Practice Midterm Antonio Russo 3

(b) The Math

(Im|cos @ |I'm’) = / dQ(Y;™)* cos Y, = / dQ(y;™)* Lym wgp [ Bom
(20 +1)(20 +3) ! (20 +1)(20— 1)1
(e Q-
(I+1)2 —m?2 12 —m?2

= Omm | 01,141 +o-1

(20 + 1)(20 + 3) @+ 1)(2—1)

(c) The Reasoning

Notice that H' does not allow mixing of different m values; i.e., (Im|H' ['m') < §pm. We can therefore
treat each m sector separately. In any m sector, it is clear that there is no longer any degeneracy, and the
first order corrections vanish (since there are no diagonal terms).

(d) Second Order

The second order correction is

@ _ |{' ’|H' |im)|? 21 o O 107 + 010
L =
Z L0 Z ) =
EQ _ £ U+ 1) =10+ 1)
21 2 al+ CVl2_
- Lelen -1 : :
et |V s Sy T e v )+

The O just means that this term doesn’t appear for [ = 0.
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PHYSICS 221B
Midterm Exam — Winter 2014

e Please write clearly
e The order of problems is not by difficulty.

e Print your name and UID on the front page. If you separate pages, please write you
name on all of them.

e Make clear which question and which part you are answering on each page.
e No core-dumps please !
e No books, notes, computers, or calculators are allowed during the exam;

o Please turn off all electronic devices.

Good Luck !!

| question | possible points | achieved points |

1. 30
2. 40
3. 50

| Total | 120 |




Some possibly useful formulas

e Harmonic oscillator for a Hamiltonian

=Pyl 22—h(*+1) (0.1)
—2m Qmwat—waa 9 .

with

! — (mwz —ip), [a,al]=1 (0.2)

a= mwz +1ip), a' =
VvV 2mhw ( P) Vv2m

e The angular momentum algebra is [J!, J?] = ihJ?, and two cyclic permutations
thereof. The corresponding ladder operators are defined to be J* = J* +4J 2 and act
by

JEj,m) = hy/5(j + 1) = m(m £ 1) |j,m £ 1) (0.3)

e The Pauli matrices

(U0 () am(28)



QUESTION 1: [30pts] Neutral Kaons

The Neutral Kaon K° and the neutral anti-Kaon K° are degenerate with respect to the
QCD hamiltonian Hy

H() I K0> - EK I K0>, HO | KQ) = EK | I_(o>, (05)

Where Ex = 500 MeV. We define two more discrete operations. First (intrinsic) parity is
a unitary operator P which acts as follows:

P|Ko) =—|Ko), P|Ko)=—|Kp) (0.6)

and charge conjugation C' is a unitary operator and acts as follows:
C | Ko) =| Ko), C'| Ko) =| Ko) (0.7)

a) Find the eigenvalues and eigenstates of the operator CP in the two dimensional state
space spanned by | Ky) and | Kj).

b) Assume that a (weak) interaction H; is added to Hy which commutes with CP. Find
the most general form of H; (viewed as a 2x2 matrix in the state space spanned by | Kj)

c¢) Calculate the first order shift of the energies due to perturbation H;.

W He b (93] Hopiadows +h, B C focken fllovs

-4 0 _ ol
Ho;(EgEOK Pz(o—i C (‘O
Noq - A=t4
ay PC=

Qxaw

(57 Jk [AX-FC) =0

N (> + 1Y)
|- = %6%\3"‘ %ﬁf(@j;)
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QUESTION 2: [50 points]
Consider the Hamiltonian for a rigid rotator
Ly L} L3

H=-142
o1, 21, T 21,

(0.8)

Here L; are the angular momentum operators and I;, 7 = 1,2, 3 are constants denoting the
moments of inertia around the three axis.
a) For the case of the symmetric top, I =1, =1, and I3 # I; and one has

B, 5,5

Hy=2, 5
°o=57 T3 Tan

(0.9)

derive the energy levels and their degeneracies.

b) With the definitions I = (/1 + I;) and A = :(I; — I). Express the Hamiltonian for a
slightly non-symmetric top, i.e. |A] << I and |A| << |I - I3] as

H = Hy+ A x Hy + o(A?) (0.10)
and determine H;
c) Calculate the correction energy eigenvalue of the state with [ = 0 to first order in A.

d) Calculate the correction energy eigenvalue of the states with [ =1 to first order in A.
State carefully which kind of perturbation theory (degenerate or non-degenerate) you use
for which states.
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QUESTION 3: [40 points]
Consider two particles with mass m coordinates z; and s moving in a one one dimensional

box with potential
o0 z <0

V(iz)=¢ 0 0<z<L (0.11)
%) r>1L

a) Assuming the particles are distinguishable what are the energies and degeneracies of the
three lowest energy levels 7

b) Assume that the two particles are identical spin 1/2 fermions. If they are in the singlet
state, what is the lowest energy state and what is its energy and generally 7 &Wg@ cz

c) If they are in the triplet state what is the lowest energy state and its energy and
degeneracy?

d) We add an interaction for the particles, which does not act on the spin but has the form
Hl(lfl,l‘g) = gé(’l?l - .’L'Q) (012)

Calculate the change in the lowest energy state for the triplet and singlet case to first order
in perturbation theory.

e) For the lowest energy triplet states calculate the second order perturbation theory
contribution to the lowest energy level.
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PHYSICS 221B

Practice Final

Real exam: Thursday March 20th, 2014, at 11.30am - 2.30pm. Room: TBA

e Please write clearly

o If you separate pages please print your name on every page used, including this one;
e Make clear which question and which part you are answering on each page.

e No core-dumps please !

e No books, notes, computers, or calculators are allowed during the exam;

e Please turn off all electronic devices.

Good Luck !!

] question \ possible points \ achieved points ‘

1. 40
2. 30
3. 30
4. 40
d. 40

| Total | 180




Some possibly useful formulas

. Harmonic oscillator for a Hamiltonian

H=P e hata s ) (0.1)
o T gmw 2% = hw(a'a 5 :
with
1 | .
a= (mwzx + ip) [a,a'] =1 (0.2)
2mhw

. The angular momentum algebra is [J!, J?] = ihJ?, and two cyclic permutations thereof.
The corresponding ladder operators are defined to be J* = J' +iJ?, and act by

TE|jym) = 1/j(G +1) —m(m£1) [jm £ 1) (0.3)

. spherical Bessel functions j;

sinx

. sinx cosx
) = HE-E (05)
. Spherial harmonics
yo — L (0.6)
0 VA
YY) = Z;COSQ (0.7)
+1 3t
Yi© = F 8?811196 (0.8)

5. Scattering formula

[e.9]

kT = Z (20 + 1)je(kr) Py(cos 0)

ikr

1 k-r /
W) = G | TR
oo 0y __
FK. k) = Z(%H)QQM Py(cos 6) (0.9)
£=0



6. phase shift for spherical symmetric potential, 1st Born approximation
5 = —k/ drr?U(r) (ji(kr))?
0

7. Possible useful integrals:

27 o
dp e = 2mJy(|al)
s 24i
/ dsin 6.1y (bsin ) = S;nb
0

where Jj is the Bessel function of the first kind.

(0.10)

(0.11)

(0.12)



QUESTION 1: [40 points]

Consider a particle of mass m moving in one dimension, subject to a attractive delta
function potential Vy(z) = —ad(x).

a) Verify that there is a bound state

O = Jre el = % (0.13)
with energy
h?K?
Y = -2" (0.14)

2m
(You can assume without proof that this is the only state with negative energy).

b) There are also continuous (scattering states) with positive energy. Verify that the state

Y p(x) = \}% sin kz (0.15)

is an eigenstate of the Hamiltonian Hy = % + V5. (Note there are also states which are even
under parity x — —z, which are modified by the presence of V}).

c) We now introduce a small uniform electric field which leads an additional contribution to
the potential
Vi = —eEx (0.16)

Treating V7 as a perturbation. Calculate the correction of the bound state energy Fjy to
second order in perturbation theory.

Hint: In the formulae for perturbation theory the discrete sum gets replaced by an
integral for a continuum. Find an argument why only the states found in b) contribute (i.e.
the states with even parity do not contribute).

d) Calculate the polarizability for the ground state.



QUESTION 2: [30 points]

Consider the scattering of a spinless particle of mass m from a diatomic molecule. The
incoming momentum is p = hké, Assume that the molecule is much heavier than the scat-
tering particle and that there is no recoil. The two atoms in the molecule are aligned along
the y-axis and localized at y = b and y = —b. The potential the particle feels in the presence
of the molecule can be modeled by delta functions:

V(&) = a(3(y — b)d(2)d(2) + d(y + b)d(2)d(2))

a) Calculate the scattering amplitude in the first Born approximation.

b) Calculate the differential cross section from a) (Express the result in terms of the scat-
tering angles).

c) Calculate the total cross section. You can either do the integrals exactly or calculate
the total cross section to order k% (inclusive) in the small & limit.



QUESTION 3: [30 points|

A two state system is described by the following Hamiltonian
H=Hy+V(t)
With a time independent Hy and a two orthonormal basis vectors satisfying
Ho|1l)=¢|1), Hy|2)=¢€]2)
The perturbation satisfies

V()| 1) = hwre ™t [2), V(t)|2) = hwe | 1)

a) Find the eigenvalues and eigenvectors of H

b) Solve the time dependent Schrédinger equation for ¢ > 0 for a state with initial condition

| (¢ =0)) =[ 1)

c) Calculate the probability to find the system at time ¢ > 0 in the state | 2).



QUESTION 4: [40 points]

A particle is scattered by a spherical symmetric potential at energies which are low enough
so that only the phase shifts dy and §; are nonzero. (For part a)-c) treat dg, d; as given).

a) Show that the differential cross section is of the form

do
— =A+B 2
70 + Bcosf + C cos” 0

b) Determine A, B, C' in terms of the phase shifts
c¢) Calculate the total cross section in terms of A, B, C'.

d) Consider a very weak and short range potential (which behaves not worse than 1/r at
the origin). Estimate the k& dependence of dy and d; in the limit & — 0.



QUESTION 5: [40 points]

Consider the one dimensional harmonic oscillator with Hamiltonian

2
1
Hy = 2p—m + §m w?a?

At time t > 0 the following perturbation is turned on

Ht)=aze~

a) If at time ¢t < 0 the system is in its ground state (of Hy) calculate to first order in time
dependent perturbation theory the probability that the system is found at time ¢ > 0 in the
first excited state.

b) If at time ¢ < 0 the system is in the first excited state (of Hy) calculate to first order in
time dependent perturbation theory the probability that the system is found at time ¢ > 0
in the ground state.

c) If the system at time ¢ < 0 is in the found state of Hy, at which order in perturbation
theory would you expect to find a nonzero transition probably to the second excited state
(Why?). Calculate this probability.

d) For the harmonic oscillator with Hamiltonian Hj above, give an example of an adiabatic
change and a sudden change. What is the time scale which is used to decide whether an
adiabatic or sudden change approximation is appropriate 7

If the system is in the ground state at time ¢ = 0 describe (without calculation) how the
state evolves at later times for the two cases.



Quantum Mechanics: 221B, Practice Final

Antonio Russo
Real Exam: March 20, 2014

1 1D § Potential

(a) Bound State
If V(z) = —ad(z)

h? d?
ot t(z) — ad(Ek(n) = Bu()
d? 2mao
@Tﬂ(m) - B*P(z) = —Ffs(ﬂ?)?ﬁ(l") (1)
Where 32 = _27;;215 . Apart from the origin, this is a first order homogeneous equation. The general

solution is: ( )
| Aexp(—pzx) >0
w(z) = { Bexp(fx) x<0 (2)
Here we used the condition that the wave function should be normalizable, so ¥(x) — 0, as z — £o0.
A, B are constants which will be determined later.

Now use the connecting condition:

Y(0-) = ¥(0+)
d d 2ma
T(0H) = (0-) = —=5u(0) 3)
Take the general solution into the above equation, we first find A = B , and
2ma

l)é2

So, B = 7#, and the bound state energy is F' = — 7.
Using normalization condition, the constant is found to be A = /3.

So, to sum up, there is only one bound state with energy F = — 2h2 , and (x) = /Bexp(—pS|z|)

(b) Continuum

It’s easy to see that p?1_x(z) o< sin(kz) o _k(z), and that 1_;(0) = 0, so the V; term vanishes for this
state.

(c) Electric Field Perturbation

First, notice that, for a discrete spectrum

ABp = AV + X2 7| n v |k>(|0)

k#n En - Ky

we are considering a case where |n) will be even, and V o z. V |k) must therefore be even, so |k) must be
odd. This tells us that the first order correction vanishes. Generalizing to the continuum,
dk |(n| V |k 2me2 B2

[(n] & |F)|*
AE, = = die ~ 220
Vor B0 R p2e2/on 1+ (k/k)2
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We have that

1
(n| 2 |k) = /da? \/Ee_ﬂlmlxﬁ sin kx = \/f/dxe_nlmxsinkx
o0 oo 1
= 2\/E/ dre "xsinkr = 24/ E/ —du e "Ry sinu
™ Jo ™ Jo k
k1 > —(k/k)u . k1 > —au
=2/=-7 due usinu = 24/ =50, due sinu
mk? Jo Tk 0 a=n/k
1 1 1 -2 2k
:2\/E23a ; =2 /25— = -2t
wk o+ 1], .k Tk (@®+1)% |, m (k%2 + k?)

S0
2E2 1 4 2,.2
AE, = — 8kme I kK

Th2Kk2/ 27 1+ (k/k)? (k2 + k2)*

_ 8kme’E? ke 1 4(k/kK)?

77rh2n6\/% L+ (k/k)% (1 + (k/k)*)*
_ BB [ (k)
C TR2k521 (1+ (k/K)?)

(d) Polarizability

2 Diatomic Scattering of Spinless Particle
(a) First Born

U= %”Qv — 8(2)5(2) [3(y — b) + 6y + b)]

3/2 o, ) 3/2 ) ,
flk, k') = —% / dye ¥ v (et = -2 27 / dye' "B [§(y = b) + 0(y +b)]
™

h2 Ar
2ma (2732 [ e _a i — k! dma (27)3/2

(b) Cross Section
Using p = hkz, k, = 0, so k; = ksinf cos ¢, and
2 9

8m2m2a

ZTUZ =|f]>= Tcosz(kbsin(‘)cos ®)

(c) Total Cross Section

8 202 32 3,22
m @ /cosz(kbsinﬁcos @) sin 6 dfd¢g — %

h4

gy =

as b — 0.

2
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3 Two State System

(a) Eigenvalues and Eigenvectors

iwt/2 /
PutU=|° 0 e,w/g , so that UTHU = [ 661, : ], with ¢ = hw;. This has eigenvalues A given by
2
0=(e1—N)(e2—A) —€? =22 — (e1 + e2)A + (e162 — €?)
or
) € +e + \/(61 + )2 —4(e1ea — €2) €1+ eat /(€1 — €)% + 4€'?
:l: = =
2
For the eigenvector,
!
s a —UTHU a | _ ael + €'b
b b
or
b, b A —a
Af —€1=—€ Or gy=—= ,
a a €

Le., the eigenvectors are U |¢+ ), with

oh = ———| - |

24293 LIE

(b) Solution to Time-dependent Schrédinger Equation

ihoy [(t)) = H(t) [¥(t))

. U8, [p(1)) = UTH(OUUT [(¢))
but

AU (t) [0 (1) = (B:UT (1)) [(8)) + UT (), [0 (t))
so that .

UT(1)0, [o(t)) = 0,UT (1) | (t)) — %UZUW) [ib(¢))
especially

haUT (0)) = [h;”a ; U*H(t)U} Ut (o)

and therefore

U (1)) = [e7 O/l ) (| + 7 O=/M4/2 16 ) (] [u(0)

Tf 1)(0)) = [ ; ] then
1 1 . B qg— .
(1)) = U () | ——=e "M /MD g ) eI/ )
V2 [,/1+g_2|_e ’ ./1Jrg2_6

(c) Finally 2

This is just substitution:

—iwt/ ) )
<2|w(t)> _ e wi/2 [ 1 e~ A4 /h—w/2)t <2‘¢+> + gi_e—z(A_/h—&-w/Q)t <2|¢_>]

V2 \1+92 \/1+g%

e g i ) I—  _iO0_ Jhtw/2)t
2 € + 2 €
1+ g7 1+g2
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4 Spherical Symmetric Potential

(a) Different Cross Section: f

_ 1 2i6; .1 260 216,
o) = 5e% El:(?l +1)(e 1)P(cos ) = 57k (e 1)+ 3(e 1) cosd]
It clear that squaring this will gives terms like the claim; see the next part for their determination.

(b) Different Cross Section: Revisited

=|fI>= m (€% — 1) + 3(e*® — 1) cosf] [(e72"% — 1) + 3(e” %" — 1) cos 0]
= 21? [(1 — c0s(280) + 9(1 — cos(20,) cos® 6 + 3 ((62“50 —1)(e7 20 — 1) 4 (e 20 _1)(e?1 — 1)) cos 9}
Next:
(621'60 o 1)(6—21’61 o 1) + (6—21'60 _ 1)(€2i61 o 1)
— 621'60(6—21'61 _ 1) _ (6—27161 _ 1) + 6—21'60 (e2z’61 _ 1) _ (621‘61 _ 1)
— €2i(60751) . e2i60 _ 6727;51 + 1 + 6727;(60761) _ 6727;50 _ e2i51 + 1
= 2[1 + cos2(dp — d1) — cos(2dg) — cos(201)]
so that ) (260)
1 —cos(2dp
A= 2k?2
B= % [1 4 cos2(dp — d1) — cos(2dg) — cos(267)]
and 9
C= @(1 — co0s(261))

(c) Cross Section

o = /—dQ A/dQ—l—B/COSHdQ-i—C/COSQHdQ

—1 —1
=4rA+ 27TB/ cos 6 d[cos 0] + 27'('C/ cos® O d[cos 0] = 4 A + %’R’C
1 1

(d) Low Momentum Limit

We use the 1st Born approximation

= _k/ooo r2dr U(r)(jl(kr))2

. sin(kr
For dg, jo = %, SO

:—k/ r2dr U(r “222 —k/ r2dr U(r :——/dVU

(it goes like f% times the total interaction strength). For 61, j; = b,;‘z‘ kr % — kr — % = —kr so

that

01 — —k/ r2drU(r)k*r? = —k3/ rddrU(r)
0 0
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5 Perturbed SHO

(a) First Excited State

) ¢ ; / ) 1 0 t - — ’
Cgl)(t) — _%/0 ezwmt Vvlo(t/) dt — _ZOé< 7‘;13‘ > A e(iwlo—T 1y g —

a+at =2mw

2mw

a(1fz|0)

—

x:\/%;w(aJraT)

(1]210) = (0] az [0) = /== (0] a [a + a] 0)

We can simplify a little:

= /7 (0] aat 0) = /25
2

’1 — liw="Dt" (1 — cos(wt)e /)% 4 sin?(wt)e = 24/T

=1 —2cos(wt)e T + cos?(wt)e 2/ + sin®(wt)e 2T =

To first order in perturbation theory,

2 2

2 2mw a

‘ (1) ’ 2mw «
b [hw — hr=1]?

‘1 _ e(iw—‘r*l)t _

(b) Ground State

. t . t
Cgbl)(t) — _3/ eiwnot’vno(t/) dt' = _’LOL <7’L| € |O> / e(iwnoff’l)t’ dt'
h 0 h 0

Forn #1

(n|z

To first order in perturbation theory,

H=1->"[cDOP =1 ()P

h [hw — hr1]

0) x (0] a™x |0) o (0] a™ [aT +al 0y =0

Antonio Russo

1—e

(iw—Tﬁl)t:|

14 e 27 — 2cos(wt)e /™

5 (1 +e 2T QCOS(wt)e_t/T>

5
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(c) Second Excited State

We use second order perturbation theory

Pt ( > Z / d / " 2 Vo ()" Voo ()

(—Z> /dt'/ dt” €1 Vo (1) e 10t Vi ()

_ a2z |1 (1| z|0) / dt/ gt pliwa =T O w71

_ o (2 x |1>< |z]0) 1 / g eliw—7"1 {1_e(m-f1)t/}
0

h? iw—T1"1
2 t
— _Oé <2| € |;2> <1‘ €z |0> : 1 — / dt' [e(iwfr_l)t' _ 62(iw77_1)t':|
w—T 0
2
_ ot (2lz(1) (1] |0) 1 ! {1 B e(m_fl)t} 1 {1 B ez(w_flﬁ}
h? (iw—771) 2
P U0)__ Ly ey
h? 2 (iw — 771)*
and we already have that
2
x = r}r;w (a+a)
and (1|2 |0) = /27 We can also get
2mw + 9
@lz ) =/ == [aa® + a®] |1)
2mw 2mw
=\ (1] [ +ala] |1) =2 5

(d) Adiabatic vs. Sudden

In the limit that 7 — 0, the exponential factor becomes a step function. For ¢ > 0, we get the full ax
potential, and for ¢ < 0, we get none. Alternatively, letting 7 — 0, we get a very slow turn on, and
consequential adiabatic change.

In the adiabatic limit, the eigenvalues of H(t) change smoothly with time, and the system remains in
the same states. E.g., if it started in the ground state, it will follow that state as it changes smoothly all
the way to the end of the adiabatic change. In the sudden limit, we imagine that the last state of the initial
system acts as the initial state of the next system, and that the changeover region essentially does not affect
the system’s evolution.

The time scale is set by the energy separation of the levels of the system (i.e., w in this case). If the time
scale is large compared to w™!, it is adiabatic; conversely, if it is small, the sudden approximation should
hold.
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