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Final Exam – Spring 2014
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• Print your name on every pages used, including this one;
• Make clear which question you are answering on each page;
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• Please write clearly; present your arguments and calculations clearly;
• All five questions below are independent from one another.
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QUESTION 1 [13 points]

(a) From the first law of thermodynamics, derive the following relation between the pressure
P and the internal energy E, both of which are functions of T, V ,

(

∂E

∂V

)

T

= T

(

∂P

∂T

)

V

− P

(b) The equation of state of a thermodynamics system is given by P = α ε(T ) where α is a
constant and E = V ε(T ). Calculate the temperature dependence of E.

(c) Calculate the entropy S(T, V ) for the system whose equation of state is given above.

QUESTION 2 [14 points]

Consider a gas of N hard spheres in a box of volume V . A single sphere excludes a volume
v around it. There are no interactions between the spheres, except for the constraints of the
hard-core exclusion. The center of mass of a single sphere is free to move through the volume
available to it and obeys the non-relativistic relation between energy, momentum and mass.

(a) Calculate the entropy S, as a function of the total energy E;
[Hint: It may be convenient to use the Γ-function, satisfying Γ(x+ 1) = xΓ(x) along with
Sterling’s formula lnΓ(x) = x ln x − x + O(ln x). Alternatively, you may wish to use the
approximate formula (V − nv)(V − (N − 1− n)v) ≈ (V −N/2)2 for 1 ≤ n ≤ N − 1.]

(b) Calculate the equation of state for this gas;

(c) Show that the isothermal compressibility κT = −V −1(∂V/∂P )
∣

∣

∣

T
is always positive.

QUESTION 3 [14 points]

We propose to evaluate the electric current density of electrons which is produced by heating
up a metal in the presence of an external electric potential. The potential energy for electrons
inside the metal vanishes, while just outside the metal it is W > 0. The electrons are considered
otherwise non-interacting, and filled up to chemical potential µ with µ < W . We consider the
problem at sufficiently low temperature so that µ may be identified with the Fermi energy.

(a) State the condition on its momentum for an electron to be able to escape from the metal
to the outside, as a function of W and µ;

(b) Derive a general integral representation for the current density I of electrons leaving the
metal;

(c) Obtain an approximation of your result in (b) valid for sufficiently low temperatures.
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QUESTION 4 [14 points]

(a) For any system of fermions at chemical potential µ and temperature T , show that the
probability for finding an occupied state of energy ε + µ is the same as that for finding an
unoccupied state of energy µ− ε.

Consider now a system of non-interacting Dirac fermions of spin 1/2 and massm. One-particle
states at momentum k come in pairs of positive and negative energy,

ε±(k) = ±
√
m2c4 + k2c2

for each value of the spin quantum number. At T = 0, all negative energy Dirac states are filled
(the so-called Dirac-sea), and all positive energy states are empty, so that µ(T = 0) = 0.

(b) Using the result of (a) compute the chemical potential at arbitrary temperature T .
(c) Compute (an integral representation for) the mean excitation energy E(T )− E(0)
(d) Evaluate the integral in part (c) for m = 0 and evaluate the specific heat CV ;
(e) Describe qualitatively the dependence on m in the specific heat at low temperature when

m ̸= 0.
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STATISTICAL PHYSICS 215A

Midterm Exam – Spring 2014

Tuesday 6 May 2014 from 1pm to 2;30pm in room PAB-2-434

• Please write clearly;
• Present your arguments and calculations clearly;
• All four questions below are independent from one another.

• Print your name on every page used, including this one;
• Make clear which question you are answering on each page;
• No books, notes, computers, or calculators are allowed during the exam;
• Please turn off cell-phones, iPhones, iPods, iPads, Kindles, and other electronic devices.

Grades

Q1.

Q2.

Q3.

———————————
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QUESTION 1 [7 points]

When n atoms in a perfect crystal formed by N atoms (where 1 ≪ n ≪ N) are displaced
from lattice sites inside the crystal to lattice sites on the surface, the crystal becomes imperfect,
and has defects. Let w > 0 be the energy necessary to displace an atom from the inside to the
surface. Assuming equilibrium at temperature T (with kT ≪ w), determine an approximate
formula for the number of displaced sites n in terms of N,w, and T . Neglect any effect due to
the change in volume of the crystal. [Hint: begin by evaluating the entropy of the system.]

QUESTION 2 [7 points]

(a) Calculate the partition function Z(T, V,N) of a gas of N non-interacting ultra-relativistic
particles. Each particle is devoid of internal degrees of freedom and its energy ε is related to its
momentum by the relativistic ε = c|p| for constant speed c.

(b) Compute the internal energy E of the system as a function of T, V,N .
(c) Compute the density of states g(E) as a function of total energy E.

QUESTION 3 [6 points]

A cylinder of radius R and length L rotates about its axis with a constant angular velocity
ω. Evaluate the normalized density function ρ of an ideal gas enclosed in the cylinder, within
the approximation of classical statistical mechanics, and assuming that equilibrium has set in
at temperature T . Ignore the effects of gravitation. [Hint: the Hamiltonian that describes the
motion in a rotation frame is H∗ = H − ωL where H is the Hamiltonian in the rest frame, and
L is the angular momentum.]
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Final Exam – Spring 2013

Monday 10 June 2013 from 3pm to 6pm in room PAB-2-434
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• No books, notes, computers, or calculators are allowed during the exam;
• Please turn off cell-phones, iPhones, iPods, iPads, Kindles, and other electronic devices.

Grades

Q1.

Q2.

Q3.

Q4.

———————————
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Some Useful formulas

• The Γ function obeys,

Γ(ν + 1) = νΓ(ν) Γ(1/2) =
√

π (0.1)

as well as Sterling’s formula in the limit of large N ,

ln Γ(N + 1) = N ln N − N + O(ln N) (0.2)

with Γ(N + 1) = N ! for integer N .

• The following integral may come in useful for question 3,

∫

∞

−∞

x2dx

(ex + e−x)2
=

π2

24
(0.3)

• The Bose-Einstein functions in question 4 are defined by,

gν(z) =
1

Γ(ν)

∫

∞

0

xν−1dx

z−1ex − 1
(0.4)

The integral is absolutely convergent for |z| < 1 and Re(ν) > 0, and admits the series expansion,

gν(z) =
∞
∑

n=1

zn

nν
(0.5)

and satisfies the differential recursion relation,

zg′

ν+1(z) = gν(z) (0.6)

as well as the following asymptotic expansion near z = e−α for 0 < α ≪ 1,

g3/2(e
−α) = ζ(3/2) − 2

√
πα

1

2 + O(α) (0.7)

Finally, we have gν(1) = ζ(ν), namely the Riemann ζ-function.
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QUESTION 1 [16 points]

For paramagnetic materials, the first law of thermodynamics states that dE = δQ + HdM ,
where H is the external magnetic field, and M is the magnetization.
(a) Write down the expressions for the specific heat CM at constant M , and the specific heat CH

at constant H in terms of the internal energy E, temperature T , as well as H and M .
(b) Show that one has,

CH = CM −
(

∂M

∂T

)

H

[

H −
(

∂E

∂M

)

T

]

(c) Consider now a paramagnetic material obeying Curie’s law M = nDH/T , for some constant
D, and n = N/V . This material is magnetized adiabatically from M = 0 to a non-zero value
of M . Calculate the ratio of the temperatures T (M)/T (M = 0) as a function of M , under the
assumption that CM is constant and that ∂E/∂M = 0 at constant T .
(d) This material is carried around a Carnot cycle with Th > Tℓ.

1 → 2 M is reduced (demagnetized) isothermally at T = Th;
2 → 3 M is reduced adiabatically;
3 → 4 M is increased (magnetized) isothermally at T = Tℓ;
4 → 1 M is increased adiabatically.

Express M3, M4 in terms of Th, Tℓ, D, CM , n, and M1, M2.
Show that the efficiency of the cycle is given by η = 1 − Tℓ/Th.

1

2

3

4

M

H

QUESTION 2 [16 points]

N indistinguishable quasi-classical particles move in one dimension of space which is a box
of length L. The Hamiltonian is that of massless relativistic particles, and is given by,

H({pi, qi}) =
N
∑

i=1

c|pi| (0.8)

Use the micro-canonical ensemble, and fix the total energy to be E.
(a) Compute the number of states Ω(E, L, N) with energy less than E. Compute the number of
states Ω′(E, L, N, ∆) with energy between E and E + ∆.
[Hint: Evaluate the non-trivial multiple integral recursively in N , using its scaling properties. ]
(b) Compute the entropy S(E, L, N). Show that in the thermodynamic limit, the entropy is an
extensive quantity.
(c) Derive the relation between energy E and temperature T . Confirm your result using the
canonical ensemble.
(d) Find the equation of state P (N, L, T ) and compute the specific heat CL at constant L.
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QUESTION 3 [16 points]

(a) Derive a formula for the specific heat CV of a system of electrons at arbitrary temperature
T and chemical potential µ in terms of the FD occupation number

f(ε) =
1

eβ(ε−µ) + 1
β =

1

kT

and the density of states D(ε) for one electron per unit volume at energy ε.
(b) Derive a formula for CV to leading non-zero order for strong degeneracy for general D(ε).
(c) Derive a formula for CV to leading non-zero order for weak degeneracy for general D(ε).
(d) Apply these formulas to a system of free non-relativistic electrons. Do you recover the
standard high T result for CV ? Explain.

QUESTION 4 [17 points]
We consider an ideal non-relativistic Bose-Einstein gas whose constituents have mass m and

no internal degrees of freedom. Total paticle number N , condensate particle number N0, T , E,
V , µ and fugacity z = eβµ, are related as follows,

N − N0 =
V

λ3
g3/2(z) E =

3kTV

2λ3
g5/2(z) (0.9)

As usual, we set λ2 = 2πh̄2/(mkT ).

We now consider instead the BE gas confined to a vertical cylinder of height L in the presence
of a uniform gravitational acceleration g.
(a) Calculate the critical temperature Tc at which BE condensation sets in under the assumption
that the gravitational effects are weak, namely mgL ≪ kTc. Express your answer in terms m, g, L
and the critical temperature T 0

c for BE condensation in the absence of gravity.
(b) Show that the effect of gravity produces a discontinuity in the specific heat CV at the BE
transition Tc, and that the value of this discontinuity is given by,

∆CV

∣

∣

∣

∣

Tc

= −
9

8
√

π
ζ
(

3

2

)

Nk

(

mgL

kT 0
c

)
1

2

(0.10)
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QUESTION 1 [14 points]

A furnace contains a gas of l/ identical moiecules in equilibrium at high temperature.
Through a smaii window in the furnace one observes a spectral line of the gas molecuies.
The width of the observed line is broadened due to the Doppler effect. Derive the intensity
1()) as a function of the observed wavelength ), the temperature T, the mass rn of one
molecule, the waveiength )s of the spectral line when the molecule is at rest, the speed of
light c, and N.

QUESTION 2 [14 points]

An electron in a magnetic field E has energy f l2* t nB according to whether the spin
magnetic moment E is parallel or anti-parallel to the magnetic field. (Here we set B -- lEl
and rc: lEl.) Calculate the paramagnetic susceptibility X of a system of free electrons at
very low temperatures when the electron gas is completely degenerate.

QUESTION 3 [14 points]

Consider a gas whose equation of state is given by the Van der Waals equation,

: NkT

with o,b > 0 constants.
(a) Show that the heat capacity at constant volume Cy depends only on temperature 7;
(b) Calculate the internal energy E in terms of. Cv as a function of T,V,N;
(c) Next, suppose that Cv is constant, and that the gas is held in a container of negligible
mass which is isolated from its surroundings. Initially, the gas is confined to 113 of the
total volume of the container by a partition (a vacuum exists in the other 2/3), and is in
equiiibrium at temperatrird 70. Then, a hole is opened in the partition, ailowing the gas to
irreversibly expand and fill the entire volume V. What is the new temperature of the gas
after thermal equilibrium is re-established ?

QUESTION 4 [14 points]

Consider an ideal gas of identical relativistic bosons, whose total number ,A{ is conserved.
The relation between the energy a and the momentum lof a single boson is given by e : clf1,
where c is the speed of light,
(a) Derive the condition for Bose-Einstein condensation in three space dimensions;
(b) Derive a formula for the critical temperature;
(c) Derive a formula for the fraction of the condensed bosons l/o to their total number ly' as

a function of temperature, and the other parameters of the problem.
(d) Does Bose-Einstein condensation occur in two space dimensions ? Justify your answer.

(o* S)rv-u

7
3
tr



QUESTION 5 [14 points]

Atoms in a solid vibrate about their respective equilibrium positions with small oscilla-
tions. Debye approximated the normal vibrations with the elastic vibrations of an isotropic
body and assumed that the number of vibrational modes g(w)dw having angular frequency
between u,, and u * da is given by,

g(w):sx{ePo-u) (0.1)

2
t4
q

Here,0istheHeavisidestepfunction,definedby0(r):0forr<0andd(r) :1forr)0,
N is the number of atoms, and cup is the so-called Debye frequency (which is a constant
whose precise value is dependent on the solid).
(a) Explain the choice of the normalization factor 9.0/ in the function g(cl) given above.
(b) Derive the formulas in terms of g(au) for the free energy F and the internal energy E'
(c) Calculate the specific heat at constant volume Cv of. a solid with the Debye model'
. [Do not attempt to evaluate any complicated integrals.]
(d) Determine the temperature dependence of Cy at high as well as at low temperatures,
and sketch the behavior across all 7.
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QUESTION 1 [13 points]

(a) 5 points From the first law of thermodynamics, derive the following relation between the
pressure P and the internal energy E, both of which are functions of T, V ,

(

∂E

∂V

)

T

= T

(

∂P

∂T

)

V

− P

(b) 4 points The equation of state of a thermodynamics system is given by P = α ε(T )
where α is a constant and E = V ε(T ). Calculate the temperature dependence of E.

(c) 4 points Calculate the entropy S(T, V ) for the system whose equation of state is given
above.

Solution to Question 1

(a) At fixed N , and in terms of the independent variables T, V , the first law reads dE(T, V ) =
TdS(T, V )− P (T, V )dV . Identifying coefficients of dT and dV gives the relations,

∂E

∂T

∣

∣

∣

∣

V
= T

∂S

∂T

∣

∣

∣

∣

V

∂E

∂V

∣

∣

∣

∣

T
= T

∂S

∂V

∣

∣

∣

∣

T
− P (0.1)

Using now the Helmholtz free energy relation dF = −SdT − PdV , we have

∂P

∂T

∣

∣

∣

∣

∣

V

=
∂S

∂V

∣

∣

∣

∣

T
(0.2)

The desired equation now readily follows by eliminating ∂S/∂V between the above equation and
the second equation in (0.1).

(b) Using P = α ε(T ) and E = V ε(T ) in the equation of (a), we find (1+α)ε(T ) = Tαε′(T ),
which we integrate to,

ε(T ) = ε0T
(1+α)/α

where ε0 is a constant.
(c) Substituting the T -dependence of E into the first equation of (0.1), we find T ∂S

∂T = V ε′(T ),
so that the entropy is given by,

S(T, V ) = S0(V ) + ε0(1 + α)V T 1/α

Here, S0 is a function of only V , but not T . In view of (0.2), however, it is found to be also
independent of V , so it is just a constant, namely the zero temperature entropy (as long as
α > 0).
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QUESTION 2 [14 points]

Consider a gas of N hard spheres in a box of volume V . A single sphere excludes a volume
v around it. There are no interactions between the spheres, except for the constraints of the
hard-core exclusion. The center of mass of a single sphere is free to move through the volume
available to it and obeys the non-relativistic relation between energy, momentum and mass.
(a) 6 points
Calculate the entropy S, as a function of the total energy E;
[Hint: use Γ(x+ 1) = xΓ(x) and Sterling’s formula lnΓ(x) = x ln x− x+O(ln x).]
(b) 4 points
Calculate the equation of state for this gas;
(c) 4 points

Show that the isothermal compressibility κT = −V −1(∂V/∂P )
∣

∣

∣

T
is always positive.

Solution to Question 2

(a) The number of micro-states available for fixed E, V,N is given by the expression,

Ω(E, V,N) =
1

N !

∫

E

N
∏

i=1

d3pid3qi
(2πh̄)3

where the momenta are constrained to lie on the sphere in dimension 3N of radius square 2mE.
The evaluation of the integral over pi is standard, and results in the expression,

Ω(E, V,N) ≈
1

Γ(N)Γ(3N2 )

(

mE

2πh̄2

)

3N
2
∫ N
∏

i=1

d3qi

To compute the spatial volume, we produce by introducing each particle one by one into the box
of volume V . The first particle has volume V available; the second V − v; the third V − 2v and
so on. All together, we obtain,

∫ N
∏

i=1

d3qi = V (V − v)(V − 2v) · · · (V − (N − 1)v) = vN
Γ(Vv + 1)

Γ(Vv −N + 1)

Using Sterling’s formula, we find,

S(E, V,N) ≈
3Nk

2
ln
(

mE

3πh̄2N

)

+
3Nk

2
+

V

v
ln
(

V

V −Nv

)

+N ln
(

V −Nv

N

)

≈
3Nk

2
ln
(

mE

3πh̄2N

)

+
5Nk

2
+Nk ln

V

N
−

N2kv

2V
(0.3)

where we have used the approximation Nv ≪ V to retain only the leading correction in going
from the first to the second line in the above formula.

3



(b) We use the micro-canonical formula for pressure, P = T∂S/∂V at fixed E, to obtain,

P =
NkT

V − Nv
2

Note that this formula holds true only to up to order (vN/V )2 corrections.

(c) The isothermal compressibility is given by, κT = NkT/(P 2V ) > 0.

4



QUESTION 3 [14 points]

We propose to evaluate the electric current density of electrons which is produced by heating
up a metal in the presence of an external electric potential. The potential energy for electrons
inside the metal vanishes, while just outside the metal it is W > 0. The electrons are considered
otherwise non-interacting, and filled up to chemical potential µ with µ < W . We consider the
problem at sufficiently low temperature so that µ may be identified with the Fermi energy.
(a) 4 points
State the condition on its momentum for an electron to be able to escape from the metal to the
outside, as a function of W and µ;
(b) 6 points
Derive a general expression for the current density I of electrons leaving the metal;
(c) 4 points
Obtain an approximation of your result in (b) valid for sufficiently low temperatures.

Solution to Questions 3

(a) We take the edge of the metal where the electrons are being emitted to be orthogonal to
the z-direction. The condition for an electron to be able to escape the metal to the outside is
that its kinetic energy in the z-direction can overcome the potential energy outside the metal,
p2z/(2m) > W where m is the electron mass, and pz is the electron momentum in the z-direction.

(b) The density of electrons inside the metal in an infinitesimal phase space volume dV d3p
(where dV is the spacial volume element) is given by,

2
dV d3p

(2πh̄)3
1

eβ(p2/2m−µ) + 1
(0.4)

The factor of 2 arises from the two spin states of the electron, and we have p2 = p2x + p2y + p2z.
The electric current density is then given by the thermal expectation value of the observable,
e pz/m per unit volume, restricted to the range pz >

√
2mW . Thus the current density I = Iz is

given by the following integral,

Iz = 2
e

m

1

(2πh̄)3

∫ ∞
√
2mW

dpz
∫ ∞

−∞
dpx

∫ ∞

−∞
dpy

pz
eβ(p2/2m−µ) + 1

(0.5)

Changing variables to the following dimensionless combinations s, t defined by,

s = β

(

p2z
2m

−W

)

t = β
p2x + p2y
2m

(0.6)

The integral for Iz reduces to,

Iz =
em

2π2h̄3 (kT )
2
∫ ∞

0
ds
∫ ∞

0
dt

1

es+t+β(W−µ) + 1
(0.7)

5



(c) For sufficiently low temperatures, namely T ≪ W − µ, we may drop the 1 in the denom-
inator, and carry out the integrals over s and t explicitly. We are then left with the following
approximate formula,

Iz =
em

2π2h̄3 (kT )
2 exp

{

−
W − µ

kT

}

(0.8)

The exponential behavior is consistent with the existence of an energy gap of size W − µ.

6



QUESTION 4 [14 points]

(a) 3 pts
For any system of fermions at chemical potential µ and temperature T , show that the probability
for finding an occupied state of energy ε+ µ is the same as that for finding an unoccupied state
of energy µ− ε.

Consider now a system of non-interacting Dirac fermions of spin 1/2 and massm. One-particle
states at momentum p come in pairs of positive and negative energy,

ε±(p) = ±
√

m2c4 + p2c2

for each value of the spin quantum number. At T = 0, all negative energy Dirac states are filled
(the so-called Dirac-sea), and all positive energy states are empty, so that µ(T = 0) = 0.

(b) 3 pts Using the result of (a) compute the chemical potential at arbitrary temperature T .

(c) 3 pts Compute (an integral representation for) the mean excitation energy E(T )−E(0)

(d) 2 pts Evaluate the integral in part (c) for m = 0 and evaluate the specific heat CV ;

(e) 3 pts Describe the qualitative change in the specific heat at low temperature when m ̸= 0.

Solution to Questions 4

(a) The probabilities for finding occupied states at energy µ+ ε and energy µ− ε are respec-
tively given by,

n(µ+ ε) =
1

eβε + 1
n(µ− ε) =

1

e−βε + 1

which are clearly related by n(µ−ε) = 1−n(µ+ε), and the right side is precisely the probability
for finding the state unoccupied at energy µ+ ε. QED.

(b) Total particle number is unchanged at finite temperature, and using the above particle-
hole symmetry, the chemical potential remains zero at any temperature, µ(T ) = 0.

(c) Formally, the internal energy is given by summing over the contributions from positive
and negative energy states, with their associated occupation numbers,

E(T ) = 2V
∫ d3p

(2πh̄)3

(

ε+(p)n(µ+ ε+(p)) + ε−(p)n(µ+ ε−(p))
)

where the prefactor of 2 arises because of the electron spin degeneracy. We now use ε−(p) =
−ε+(p) as well as the result of (a), namely n(µ + ε−(p)) = n(µ − ε+(p)) = 1 − n(µ + ε+(p)).
Hence, we have

E(T ) = 2V
∫ d3p

(2πh̄)3

(

2ε+(p)n(µ+ ε+(p)) + ε−(p)
)

7



Omitting the T -independent contribution of the term in ε−(p) in the integrand amounts to
subtracting the energy of the negative energy Dirac sea. Also, setting now µ = 0 by the result
of (b), we find,

E(T )−E(0) = 4V
∫ d3p

(2πh̄)3
ε+(p)

eβε+(p) + 1

The multiplicity is explained as follows. One factor of 2 arises from spin 1/2, while the other
arises from the contributions of both positive and negative energy states.

(d) For ε+(p) = c|p|, we have,

E(T )−E(0) = 4V
∫ d3p

(2πh̄)3
c|p|

eβc|p| + 1
=

2V

π2h̄3c3
(kT )4

∫ ∞

0
dx

x3

ex + 1

The value of the last integral is 6ζ(4) = π4/15, but it is not essential that it be evaluated.

(e) When m ̸= 0, the energy spectrum develops a gap of size 2mc2, so that there must be a
suppression factor exp{−mc2/kT} at low temperatures.

8



Midterm 1 Solutions

Started: May 6, 2014
Last updated: May 7, 2014

Question 1.

Set the energy of a crystal with no defects to be zero, then it’s energy with n defects is
E = wn. It follows that the temperature of the system satisfies

1

T
=

@S

@E
=

@S

@n
=

@S

@n

@n

@E
=

1

w

@S

@n
. (1)

Now we simply evaluate @S/@n in the regime 1 ⌧ n ⌧ N . The number of microstates
corresponding to n defects out of a total of N sites is

⌦(n,N) =

✓
N

n

◆
=

N !

n!(N � n)!
(2)

So, by using Stirling’s approximation ln k! ⇡ k ln k � k, we find

S(n,N)

k
= ln⌦(n,N)

= lnN !� ln(N � n)!� lnn!

⇡ N lnN �N � (N � n) ln(N � n) + (N � n)� n lnn+ n

= N lnN � (N � n) ln(N � n)� n lnn (3)

and therefore

@S

@n
⇡ k ln

N � n

n
(4)

Combining this with (1) gives

n ⇡ Ne�w/kT (5)

1



Question 2.

(a) Using the notation p = |p|, the partition function of the system (assuming indistinguish-
able particles) is

Z =
1

N !

Z
d3Npd3Nq

h3N
e��H(p,q) =

1

N !

Z
d3pd3q

h3
e��cp

�N
=

(4⇡V )N

N !h3N

Z 1

0

dp p2e��cp

�N
(6)

we can convert the integral in brackets to a dimensionless integral by making the substitution
u = �cp, then

Z =
(4⇡V )N

N !h3N

IN

(�c)3N
, I ⌘

Z 1

0

du u2e�u = 2 (7)

(b) The simplest way to compute the ensemble average energy E is to take an appropriate
derivative of the partition function;

E = �@ lnZ

@�
= � 1

Z

@Z

@�
= � 1

Z
(�3N��1Z) = 3NkT . (8)

(c) The density of states is defined as;

Z(�) =

Z 1

0

dE e��Eg(E). (9)

Namely, the partition function is the Laplace transform of the density of states. To compute
the density of states, we need to invert this transform. In general, inverting a Laplace
transform may not be so easy, but in this problem, we can be clever. The partition function
Z is of the form ⌫��3N , so density of states satisfies

⌫��3N =

Z 1

0

dE e��Eg(E). (10)

The trick is to change variables u = �E so that

⌫

�3N�1
=

Z 1

0

du e�ug

✓
u

�

◆
(11)

We can now see by inspection (think of performing integration by parts 3N � 1 times), that
this equation is solved by a function g of the form

g(E) = ↵E3N�1 (12)

We can determine ↵ by plugging it back into the equation;

↵ = ⌫

✓Z 1

0

du e�uu3N�1

◆�1

=
⌫

(3N � 1)!
(13)

Putting this all together, and noting the value of ⌫ from part (a) of this problem in terms
of the other given parameters, we find that

g(E) =
(4⇡V )N

N !h3N

2N

c3N
E3N�1

(3N � 1)!
(14)
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Question 3.

Method 1.

We appeal to our knowledge from problem 4.2 on the homework. We note that determin-
ing the number density n = ⇢/m, where m is the mass of each molecule, amounts to finding
a critical point of the Helmholtz free energy functional. We go into the rotating frame of the
cylinder in which case the energy of the gas is E[n] = E0 + Ecf [n] where E0 is the energy
that gas would have if the cylinder were non-rotating, and Ecf is the extra energy due to the
centrifugal force. If we appeal to rotational symmetry to write the density as only a function
of the cylindrical coordinate r, then

Ecf [n] = �
Z

cyl.

1

2
dm(r) r2!2 = �1

2
m!2(2⇡L)

Z R

0

dr r3n(r) (15)

In addition, we assume, as in the homework, that the entropy of the system for a given
number density n can be written as

S[n] = �k

Z

cyl.

d3xn(x) lnn(x) = �k(2⇡L)

Z R

0

dr r n(r) lnn(r) (16)

where we have appealed to rotational symmetry to write the density purely as a function of
the cylindrical radial coordinate r. We want to determine the density n satisfying �F [n] = 0
for all variations of n that keep the total particle number N =

R
n fixed. The Helmholtz

free energy is E[n]� TS[n], so using (15) and (16), we find that the condition for finding a
critical point of the free energy is

0 =

Z R

0

dr r
⇣
kT lnn(r) + kT � 1

2
m!2r2

⌘
�n(r) (17)

Now, recall that we have the total particle number constraint, which tell is that only varia-
tions satisfying the following constraint are admissible:

Z R

0

dr r �n(r) = 0 (18)

Noting that (17) holds for all variations satisfying (18), we find that their exists a constant
w for which

kT lnn(r)� 1

2
m!2r2 = w. (19)

It follows that

n(r) = n(0) exp

✓
m!2r2

2kT

◆
(20)
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Plugging this back into the particle number constraint N =
R
n allows us to compute the

normalization n(0). After normalizing and noting that ⇢(r) = mn(r), we find that

⇢(r) =
Nm

⇡R2L

m!2R2

2kT


exp

✓
m!2R2

2kT

◆
� 1

��1

exp

✓
m!2r2

2kT

◆
(21)

Method 2.

Note that the mass density ⇢ can be written as a function on the 3N + 3N dimensional
phase space of the system as follows:

⇢(x; p, q) = m
NX

i=1

�(3)(x� xi), (p, q) ⌘ (p1, . . . ,pN ,x1, . . . ,xN) (22)

One can then determine the ensemble average density as follows

h⇢(x)i = 1

Z

Z
d3Np d3Nx

h3N
e��H⇤(p,q)⇢(x; p, q), H⇤ = H � !L (23)

and this reproduces the answer that employs the first method.
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STATISTICAL PHYSICS 215A

Final Exam – Spring 2013 – SOLUTIONS

1 Solution to Question 1

(a) The specific heats in question are defined by

CM =

(

∂E

∂T

)

M

CH =

(

∂(E − MH)

∂T

)

H

(1.1)

(b) In the canonical ensemble, the independent variables are (T, M), and we have E(T, M).
To compute CH , we use independent variables T, H , so that M is a function of T, H which
we denote M(T, H). Thus, we have

CH =
∂(E − HM)

∂T

∣

∣

∣

∣

H
=

∂E

∂T

∣

∣

∣

∣

H
− H

∂M

∂T

∣

∣

∣

∣

H

∂E

∂T

∣

∣

∣

∣

H
=

∂E(T, M(T, H))

∂T

∣

∣

∣

∣

H
=

∂E

∂T

∣

∣

∣

∣

M
+

∂E

∂M

∣

∣

∣

∣

T

∂M

∂T

∣

∣

∣

∣

H
(1.2)

from which the expression of (a) follows immediately.

(c) Curie’s law allows us to express H in terms of (T, M), and we have,

dE = TdS +
MT

nD
dM (1.3)

Since CM is constant, and ∂E/∂M = 0 at constant T , we have dE = CMdT . During
adiabatic transformations, we have dS = 0, so that we obtain the differential equation,

CM dT =
MT

nD
dM (1.4)

Dividing both sides by T separates the variables, and allows us to integrate by quadrature,

T (M) = T (M = 0) exp

{

M2

2nDCM

}

(1.5)

(d) The transformations 2 → 3 and 4 → 1 are adiabatic; using (1.5), we have,

M2
3 = M2

2 − 2nDCM ln
Th

Tℓ

M2
4 = M2

1 − 2nDCM ln
Th

Tℓ
(1.6)



Note that the signs work out as Th > Tℓ, while we have M2
3 < M2

2 and M2
4 < M2

1 .

The heat liberated along an isothermal may be computed from the fact that for fixed T
the internal energy E remains constant for this specific material in view of the assumption
that ∂E/∂M = 0 at constant T ,

0 = δQ + HdM = δQ +
MT

nD
dM (1.7)

The heat liberated along the isothermal processes 1 → 2 and 3 → 4 is respectively given by,

Qh = −
Th

2nD
(M2

1 − M2
2 )

Qℓ = −
Tℓ

2nD
(M2

4 − M2
3 ) (1.8)

As internal energy is conserved along the isothermals, we have

W1→2 = Qh W3→4 = Qℓ (1.9)

while along the adiabatics, the work equals the change in internal energy, and we have,

W2→3 = −CM(Th − Tℓ) W4→1 = −CM(Tℓ − Th) (1.10)

Elimination Th/Tℓ between the two equations in (1.6), we find M2
1 − M2

2 = M2
4 − M2

3 , so
that we find Qh/Qℓ = Th/Tℓ. The total work done by the system is given by conservation of
total internal energy by W = Qh − Qℓ. By definition of η, we have,

η =
W

Qh
= 1 −

Qℓ

Qh
= 1 −

Tℓ

Th
(1.11)

Note that by the second law of thermodynamics, W, Qh, and Qℓ are all positive.

2 Solution to Question 2

(a) The total number of micro-states Ω(E, L, N) is given by the multiple integral,

Ω(E, L, N) =
1

N !

N
∏

i=1

∫ dqidpi

2πh̄
θ

(

E − c
N
∑

i=1

|pi|
)

(2.1)

where θ denotes the Heaviside step function. The factor of 1/N ! is included to account for
the indistinguishability of the particles stated in the problem. The range of each integral in
qi is over the box of length L. By symmetry of the integrand under pi → −pi, we restrict

2



the range of integration in pi to [0,∞], and include a factor of 2 for each integration. Thus,
we end up with the simplified formula,

Ω(E, L, N) =
1

N !

(

2L

2πh̄

)N

V(N, E/c)

V(N, λ) =
N
∏

i=1

∫ ∞

0
dpi θ

(

λ −
N
∑

i=1

|pi|
)

(2.2)

By scaling all pi, we see that we have,

V(N, λ) = λNV(N, 1) (2.3)

On the other hand, the integral may be evaluated iteratively,

V(N, λ) =
∫ λ

0
dpNV(N − 1, λ − pN)

=
∫ λ

0
dpN(λ − pN)N−1V(N − 1, 1) =

λN

N
V(N − 1, 1) (2.4)

Putting all together, we have V(N, λ) = λN/N ! so that,

Ω(E, L, N) =
1

(N !)2

(

LE

πh̄c

)N

(2.5)

It immediately follows that

Ω′(E, L, N, ∆) =
1

(N !)2

(

LE

πh̄c

)N N∆

E
(2.6)

(b) The entropy is defined in terms of the number of micro-states at energy E, so it
should be in terms of Ω′. We shall adopt the following definition,

S(E, L, N) = k ln
Ω′(E, L, N, ∆)

∆
= k ln

(

1

(N !)2

(

LE

πh̄c

)N N

E

)

(2.7)

In the thermodynamic limit, the contribution from the factor N/E cancels out, and we omit
it outright. The remaining expression in the limit may be rearranged as follows,

S

N
= k ln

(

LE

πh̄cN2

)

+ 2k (2.8)

We have used Sterling’s formula to obtain the last term. The entropy is properly extensive.

3



(c) Using the micro-canonical ensemble, we have from the definition of temperature,

1

T
=

∂S

∂E

∣

∣

∣

∣

N,L
=

kN

E
(2.9)

The resulting relation E = NkT violates the equipartition theorem by a factor of 2. In the
canonical ensemble, we calculate the partition function,

Z =
1

N !

N
∏

i=1

(

∫ dpidqi

2πh̄
e−βc|pi|

)

=
1

N !

(

kTL

πh̄c

)N

(2.10)

The internal energy is deduced directly from

E = −
∂ ln Z

∂β
= NkT (2.11)

which agrees with the earlier calculation in the micro-canonical ensemble.

(d) Returning to the micro-canonical ensemble, the pressure is given by,

P

T
=

∂S

∂L

∣

∣

∣

∣

E,N
=

Nk

L
(2.12)

so that P = NkT/L, while we have,

CL =
∂E

∂T

∣

∣

∣

∣

L,N
= kN (2.13)

3 Solution to Question 3

(a) In terms of the density of one-particle states D(ε) and the Fermi occupation number f ,
the total number of particles N and the internal energy E are given by,

N = V
∫ ∞

0
dε D(ε)f(ε)

E = V
∫ ∞

0
dε εD(ε)f(ε) (3.1)

We assume that D(ε) = 0 for ε < 0. Since the function D(ε) does not involve temperature
(but may involve V which is held constant in computing CV ), the specific heat is given by,

CV =
∂E

∂T
= V

∫ ∞

0
dε εD(ε)

∂f(ε)

∂T
(3.2)
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Note that since we are using the grand-canonical ensemble here, this specific heat corresponds
to holding µ fixed (instead of in the canonical ensemble where we would hold N fixed instead).
Working this out, and after some minor simplifications, we get,

CV =
V

kT 2

∫ ∞

0
dε

ε(ε − µ)D(ε)

(eβ(ε−µ)/2 + e−β(ε−µ)/2)2
(3.3)

(b) Strong degeneracy corresponds to low temperatures. The denominator is then responsible
for concentrating the support of the integral over ε near µ, so we may extend the integration
region all the way to −∞. Also, to leading order, we may evaluate D(ε) at the central value
µ. The parity of the remaining integral allows us to replace the factor ε in the numerator
by ε − µ, so that we end up with the following expression,

CV =
V D(µ)

kT 2

∫ ∞

−∞
dε

(ε − µ)2

(eβ(ε−µ)/2 + e−β(ε−µ)/2)2 (3.4)

Changing variables from ε to x with ε = µ + 2kTx gives,

CV = 8k2TV D(µ)
∫ ∞

−∞
dx

x2

(ex + e−x)2
(3.5)

Using the value of the integral stated in the problem, and the fact that for small temperatures
we have µ = µ0 + O(T 2), with µ0 defined by,

N = V
∫ µ0

0
dε D(ε) (3.6)

we approximate this result by setting D(µ) = D(µ0), so that the final result is given by,

CV =
1

3
π2k2V D(µ0) T (3.7)

Observe from equation (3.6) that holding µ fixed is equivalent to holding N fixed in the
approximation of T = 0; thus CV computed at fixed µ as was done here in the grand-
canonical ensemble coincides with CV computed at fixed N .

(c) Weak degeneracy corresponds to high temperature T , in which case the FD occupation
number becomes the Boltzmann number, and we have,

CV =
V

kT 2

∫ ∞

0
dε ε(ε − µ)D(ε) e−β(ε−µ) (3.8)

with µ obtained from,

N = V
∫ ∞

0
dε D(ε)e−β(ε−µ) (3.9)

5



In both the formulas for CV and N , the fugacity eβµ factors out from under the integrations,
and we may eliminate it entirely, to obtain the formula,

CV =
N

kT 2

∫∞
0 dε ε(ε − µ)D(ε) e−βε

∫∞
0 dε D(ε)e−βε

(3.10)

Note that,as earlier, this is still the specific heat at constant µ, not constant N .
(d) The density of states for a non-relativistic free particle is given by

g
∫ d3pd3q

(2πh̄)3
f(ε) = p2/2m) =

2πgV (2m)3/2

(2πh̄)3

∫ ∞

0
dε

√
εf(ε) (3.11)

where g = 2 for the electron. Thus, we conclude that

D(ε) =
2πgV (2m)3/2

(2πh̄)3

√
ε (3.12)

For low T , formula (3.6) gives µ0 as a function of the number density,

N

V
=

4πg

3

(

2mµ0

(2πh̄)2

)3/2

(3.13)

so that the specific heat takes the form,

CV

Nk
=

mkT

4h̄2

(

4πgV

3N

)2/3

(3.14)

For high T , the specific heat at constant µ is given by

CV

Nk
= β2

∫∞
0 dε ε3/2(ε − µ) e−βε

∫∞
0 dε ε1/2e−βε

=

∫∞
0 dx x3/2(x − βµ) e−x

∫∞
0 dx x1/2e−x

=
Γ(7/2)

Γ(3/2)
−

Γ(5/2)

Γ(3/2)
βµ =

15

4
−

3

2
βµ (3.15)

At high T the last term may be neglected. We do not find the standard 3/2 because this
is not the specific heat at constant N . To obtain the latter in the large T limit, one should
first eliminate µ in favor of N , so that one first obtains,

E

N
=

∫∞
0 dε ε D(ε) e−βε

∫∞
0 dεD(ε) e−βε

=
3

2
kT (3.16)

The standard result CV = 3Nk/2 then follows.
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4 Solution to Question 4

(a) The Hamiltonian for this system depends on the height ℓ of the matter in the cylinder
of total height L, with 0 < ℓ < L, and is given by,

H =
p2

2m
+ mgℓ (4.1)

The corresponding number density is given by,

N − N0 =
V

L

∫ L

0
dℓ
∫ d3p

(2πh̄)3

1

eβ(p2/2m+mgℓ−µ) − 1
(4.2)

Th expression may be recast in terms of the function g3/2. Setting ℓ = Ly, we obtain,

N − N0 =
V

λ3

∫ 1

0
dy g3/2

(

z e−βmgLy
)

(4.3)

Criticality in the absence of gravity is at temperature T 0
c , with corresponding value λ0, and

is determined by setting z = 1, so that we have,

N =
V

λ3
0

g3/2(1) =
V

λ3
0

ζ(3/2) (4.4)

Criticality in the presence of gravity at temperature Tc with corresponding value λ is deter-
mined by setting z = 1, so that we have the relation,

N =
V

λ3

∫ 1

0
dy g3/2

(

e−βmgLy
)

(4.5)

Since we have mgL ≪ kTc, we may uniformly expand the integrand as follows,

g3/2

(

e−βmgLy
)

= ζ(3/2) − 2
√

π(βmgLy)
1

2 + O(βmgL) (4.6)

Combining equations (4.4) with (4.5) in the above approximation, we find,

1

λ3
0

=
1

λ3

∫ 1

0
dy

(

1 −
2
√

π

ζ(3/2)
(βmgLy)

1

2 + O(βmgLy)

)

(4.7)

Within the approximation of small gravitational effects, we have,

Tc = T 0
c

⎛

⎝1 +
8
√

π

9ζ(3/2)

(

mgL

kT 0
c

)
1

2

+ O(g)

⎞

⎠ (4.8)
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(b) In the condensed phase, we set z = 1, so that the internal energy is given by,

E

V
=

3kT

2λ3

∫ 1

0
dy g5/2

(

e−βmgLy
)

(4.9)

From the asymptotics of g3/2, we deduce the asymptotics of g5/2, and we find,

g5/2(e
−α) = ζ(5/2) − ζ(3/2)α +

4

3

√
πα3/2 + O(α2) (4.10)

From this expansion, it is clear that the next order correction arising from the integral
is suppressed by a factor of mgL/kTc, so this is subleading compared to the square root
behavior. As a result, we find,

E

V
=

3kT

2λ3
ζ(5/2) (4.11)

so that the specific heat is given by,

CV

Nk
=

15

4

ζ(5/2)

ζ(3/2)

λ3
0

λ3
(4.12)

where λ corresponds to Tc, while λ0 corresponds to T 0
c .

In the gas phase, we have instead,

E

V
=

3kT

2λ3

∫ 1

0
dy g5/2

(

ze−βmgLy
)

(4.13)

Since g5/2(z) has a regular expansion near z = 1 to leading non-trivial order, the exponential
correction in the argument may be neglected, as it is of higher order. Thus we are left with,

E

V
=

3kT

2λ3
g5/2 (z) (4.14)

The specific heat is obtained by differentiating with respect to T , including the dependence
on z,

CV

Nk
=

15

4

g5/2(z)

g3/2(z)

λ3
0

λ3
+

3

2

λ3
0

λ3

∂ ln z

∂ ln T

∣

∣

∣

∣

N,V
(4.15)

The remaining derivative is obtained from differentiating the relation

N

V
λ3 =

∫ 1

0
dy g3/2

(

ze−βmgLy
)

(4.16)
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with respect to T , while keeping N and V fixed. Setting z = 1 to match with the condensed
phase, and again neglecting higher orders in mgL/kTc, we find the discontinuity to be given
by,

∆CV

Nk
= −

9

4

ζ(3/2)
∫ 1
0 dy g1/2 (e−βmgLy)

(4.17)

Using the expansion of g1/2 near 1, derived from that of g3/2, we find,

g1/2(e
−α) =

√

π

α
+ O(1) (4.18)

so that

∆CV

Nk
= −

9ζ(3/2)

8
√

π

(

mgL

kT 0
c

)
1

2

(4.19)
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