PHYSICS 210A, Winter 2009
Final Exam (100 points in total)

- Closed books and closed notes
- Please write down the necessary intermediate steps
- Write your answers in the space provided. Continue on the back if necessary.
- A formula sheet is provided in the last page of the exam.

Name: \qquad ID: \qquad .

Problem 1: \qquad

Problem 2: \qquad

Problem 3: \qquad

Problem 4: \qquad

Problem 5: \qquad

Problem 6: \qquad

Total:

1. Two concentric conducting spheres of inner and outer radii a and b, respectively, carry charges $\pm Q$. The empty space between the spheres is half-filled by a hemispherical shell of dielectric (of dielectric constant $\varepsilon / \varepsilon_{0}$) as shown in the figure.
(a) Find the electric field everywhere between the spheres. (8 points)
(b) Calculate the surface-charge distribution on the inner sphere. (5 points)
(c) Calculate the bound (or polarization) charge density induced on the surface of the dielectric at $r=a$. (5 points)

2. A sphere of radius a made of linear magnetic material with permeability μ is placed in an otherwise uniform magnetic field $\vec{H}_{0}=H_{0} \hat{z}$ in vacuum.
(a) Find the magnetic fields, \vec{H}, inside and outside the sphere. (7 points)
(b) Find the induced magnetic dipole moment and magnetization. (7 points)
(c) Find the bound currents inside the sphere, \vec{J}_{b}, and on its surface, \vec{K}_{b}. (4 points)
3. The electric field of an electromagnetic wave in a linear medium with permeability μ has the form $\vec{E}=E_{0} e^{-\alpha z} e^{-i(\omega t-k z)} \hat{y}$ where E_{0} and α are real and positive quantities.
(a) Find the \vec{B} field associated with the electromagnetic wave. (6 points)
(b) Find the time-averaged Poynting vector \vec{S}. (6 points)
(c) Find the time-averaged energy density per unit time absorbed by this medium. (6 points)
4. Two infinite thin plates are located at $z=+d / 2$ with potential of $+V \cos (k y)$ and at $z=-d / 2$ with potential of $-V \cos (k y)$, respectively, where y is one of the coordinates parallel to the face of the plate. Find the electrostatic potential and the electric field at any point between the two plates. (15 points)
5. Consider a circular line charge of radius a in the $x-y$ plane having a charge density

$$
\begin{array}{ll}
\lambda(\varphi)=+\lambda & 0<\varphi<\pi \\
\lambda(\varphi)=-\lambda & \pi<\varphi<2 \pi
\end{array}
$$

where $\varphi=\arctan (y / x)$.
(a) Calculate the monopole moment, the dipole moment and all the components of the quadrupole moment tensor for this charge distribution. (7 points)
(b) Calculate the first two terms of the far-field potential for this charge distribution. (7 points)
6. Consider a cylindrical capacitor of length L with charge $+Q$ on the inner cylinder of radius a and $-Q$ on the outer cylindrical shell of radius b. The capacitor is filled with a lossless dielectric with dielectric constant equal to 1 . The capacitor is located in a region with a uniform magnetic field \vec{B}, which points along the symmetry axis of the cylindrical capacitor. A flaw develops in the dielectric insulator, and a current flow develops between the two plates of the capacitor. Because of the magnetic field, this current flow results in a torque on the capacitor, which begins to rotate.
(a) After the capacitor is fully discharged (total charge on both plates is now zero), what is the magnitude and direction of the angular velocity of the capacitor? The moment of inertia of the capacitor (about the axis of symmetry) is I, and you may ignore fringing fields in the calculation. (12 points)
(b) Aside from fringing fields, what else are you ignoring in calculating the answer to (a)? (5 points)

Problem 1, tram HWK Final Solutions
4.10
a.

By symmetry, both the Died and the Afield must be radial.
We can also see this's by noting the boundary conditions $\Delta E_{l 1}=0 \quad \Delta D_{\perp}=\sigma_{\text {fra }}$

Look at inmates conductor:
Total chage Q will divide its off into Q_{0} and Q_{1}, evenly distributed in each half

$$
Q_{0}+Q_{1}=Q
$$

Take a Hemispherical gaussian sort face
from $V \cdot D=\rho$ free

$$
2 \pi r^{2} D_{1}=Q_{1}
$$

$E=\frac{1}{\varepsilon} D$

$$
\begin{array}{ll}
D_{1}=\frac{Q_{1}}{2 \pi r^{2}} & \text { and } \\
P_{0}=\frac{Q_{0}}{2 \pi r^{2}} \\
E_{1}=\frac{1}{\varepsilon_{1}} \frac{Q^{\prime}}{2 \pi r^{2}} & E_{0}=\frac{1}{\varepsilon_{0} 2 \pi r^{2}}
\end{array}
$$

Looking at the $\theta=0$ a π surface and noting E_{11} Must be continuances,

$$
E_{1}=\varepsilon_{0} \quad \Rightarrow \quad \frac{Q_{1}}{\varepsilon_{1}}=\frac{Q_{0}}{\varepsilon_{0}} \quad Q_{1}=K Q_{0} \quad \text { when e } K=\frac{\varepsilon_{1}}{\varepsilon_{0}}
$$

combine with $\begin{aligned} & Q_{0}+Q_{1}=Q \\ & Q_{0}(1+K)=Q \\ & Q_{1}\left(1+\frac{1}{k}\right)=Q\end{aligned} \Rightarrow \begin{aligned} & Q_{0}=\frac{Q}{1+K} \\ & Q_{1}=\frac{K Q}{1+K}\end{aligned} \quad$ note also $\sigma_{\text {free }}=\frac{Q_{000} 1}{2 \pi a^{2}}$
So, $\vec{E}_{0}=\frac{Q}{2 \pi \varepsilon_{0}} \frac{1}{(1+k) r^{2}} \hat{r} \quad \vec{E}_{1}=\frac{Q}{2 \pi \varepsilon_{1}} \frac{k}{(1+k) r^{2} \hat{r}} \quad$ (which ore equal)
b. The total σ ($\left.\sigma_{\text {free }}+\sigma_{\text {band }}\right)$ will be to some around the ismen spue since $E=\frac{\text { carrot }}{\varepsilon_{0}}$ and E is the same in both regions

$$
\begin{array}{ll}
\sigma_{\text {tot }}=\varepsilon_{0} E_{0}=\frac{Q}{2 \pi^{2}(1+K)}-\frac{1}{2}=\sigma_{\text {free }}+\sigma_{\text {bound }} \quad \text { from } P f_{a}, \quad \begin{array}{l}
\sigma_{\text {frae }}^{0}=\frac{Q}{2 \pi a^{2}(1+K)} \\
\sigma_{\text {far }}^{1}=\frac{Q}{2 \pi a^{2}(1+K)}
\end{array}
\end{array}
$$

c. in region $0, \sigma_{\text {tat }}=\sigma_{\text {fine }} \Rightarrow \sigma_{\text {bend }}=0$ as expected
in region 1, $\sigma_{\text {tat }}-\sigma_{\beta_{\text {preen }}}=\frac{Q}{2 \pi a^{2}(1+k)}(1-K)=\sigma_{\text {bound }}$

Problem 2
a Since there are no free currents $\nabla \times H=0$ and we can use the magnetic potential formulation $-\nabla \phi_{n}=H . \quad \nabla \cdot B=0$ ϕ_{m} obeys Laplace's equation.

$$
\begin{aligned}
\Rightarrow \nabla \cdot(\mu H) & =\mu \nabla \cdot H=0 \\
\nabla \cdot(-\nabla \phi) & =0 \Rightarrow \nabla^{2} \phi_{n}=0
\end{aligned}
$$

$$
\begin{aligned}
\phi_{\text {in }} & =\sum_{l} B_{l} r^{l} P_{l} \\
\phi_{\text {out }} & =\sum_{l} \frac{A_{l}}{r^{l+1}} P_{l}-H_{0} z^{l} \text { nonvally } P_{l} \cos \theta=r P_{1} \\
& =\left(\frac{A_{1}}{r^{2}}-H_{0} r\right) P_{l}+\sum_{l=1} \frac{A_{l}}{r^{l+1}} P_{l}
\end{aligned}
$$

Apply Boundary Condition $\phi_{\text {in }}=\phi_{\text {out }}$ at $r=a$

$$
\text { for } \begin{align*}
l=1 & B_{1} a=\frac{A_{1}}{a^{2}}-H_{0} a \quad \tag{1}\\
l \neq 1 & B_{l} a^{l}=\frac{A_{l}}{a^{l+1}}
\end{align*}
$$

Apply B.C. $\quad B_{\perp}$ continuous

$$
\begin{align*}
& B=\mu H=-\mu \nabla \phi \cdot \hat{r} \quad \frac{\partial}{\partial r} \phi_{i n}=\sum_{l} l B_{e} r^{l-1} P_{l} \\
& \frac{\partial}{\partial r} \phi_{\text {out }}=\sum_{l \neq 1}\left[-\left(l_{1}\right) \frac{A_{e}}{r^{l+2}} P_{l}\right]+-2 \frac{A_{1}}{r^{3}}-H_{0} \\
& l=1 \quad \mu B_{1}=\mu_{0}\left[\frac{-2 A_{1}}{a^{3}}-H_{0}\right] \quad \Rightarrow \quad-\frac{\mu}{\mu_{0}} B_{1} a^{3}=2 A_{1}+H_{0} a^{3} \tag{3}\\
& \mu l B_{l} a^{l-1}=-N_{d}(l+1) \frac{A l}{a^{l+2}} \\
& A_{l}=-\frac{\mu}{\mu_{0}} B_{l} \frac{l}{l+1} a_{l+1}^{2 l+1} \tag{4}
\end{align*}
$$

$\begin{array}{llll}\text { from } 2,4 & A_{l}=B_{e}=0 & l \neq 1 & \\ \text { from } 1,3 & A_{1}=-a^{3} H_{0} & \frac{1-\mu / \mu_{0}}{2+M / \mu_{0}} & B_{1}=-\frac{3+H_{0}}{2+\mu / \mu_{0}}\end{array}$
s. $\quad \phi_{\text {in }}=-\frac{3 H_{0}}{2+M_{/} \mu_{0}} r \cos \theta$

$$
\begin{aligned}
& \phi_{\text {out }}=-H_{0} r \cos \theta\left[1+\frac{a^{3}}{r^{3}} \frac{1-r / \omega_{0}}{2+M / m_{0}}\right] \\
& \vec{H}_{\text {in }}=\frac{1}{\mu} \vec{B}_{\text {in }}=-\nabla \phi_{\text {in }}=\frac{3 H_{0}}{2+\mu_{/ o_{0}}[\cos \theta \hat{r}-\sin \theta \hat{\theta}]=\frac{3 H_{0}}{2+\mu / m_{0}} \hat{z}} \\
& \vec{H}_{\text {out }}=\frac{1}{\mu_{0}} \vec{B}_{\text {act }}=H_{0} \hat{z}-H_{0} \frac{a^{3}}{r^{3}} \frac{1-r / m_{0}}{2+r / m_{0}}[\underbrace{2 \cos \theta \hat{r}+\sin \theta}_{\text {dipole field }} \hat{\theta}]
\end{aligned}
$$

b.

$$
\phi_{\text {dipole }}=\frac{\vec{m} \cdot \hat{r}}{4 \pi r^{2}}
$$

compare to $\phi_{\text {out }}=-H_{0} r \cos \theta \frac{a^{3}}{r^{3}} \frac{1-r / r_{0}}{2+r / r_{0}}+$ cumitiont \vec{m} is in \hat{z} with magnitude

$$
|\vec{m}|=-4 \pi H_{0} a^{3} \frac{\left(1-\mu / \mu_{0}\right)}{2+\mu_{0} / \mu_{0}}
$$

remember, $\mu=\mu_{0}(1+x)$

$$
\begin{aligned}
& =\left(\frac{\mu}{\mu_{0}}-1\right) \vec{H} \\
& =-3 H_{0} \frac{1-\mu / \mu_{0}}{2+\mu / \mu_{0}}
\end{aligned}
$$

comopres \vec{m} to \vec{M}, we see that $\vec{m}=\frac{4}{3} \pi a^{3} \vec{M}$, as it should be.
c. $\quad \vec{J}_{b}=\nabla \times \vec{M}$
\vec{M} is constant so $\overrightarrow{\vec{J}}_{b}=0$

$$
\begin{aligned}
\vec{K}_{b} & =\vec{M} \times \hat{n}=M \hat{z} \times \hat{r}=M(\cos \theta \hat{r}-\sin \theta \hat{\theta}) \times \hat{r} \\
& =M \sin \theta \hat{\phi} \\
& =-3 H_{0} \frac{1-M / \mu_{0}}{2+\Gamma / \mu_{0}} \sin \theta \hat{\phi}
\end{aligned}
$$

Problem 3
a. $\vec{E}=E_{0} e^{-a z} e^{i(k z-\omega t)} \hat{y}$ whee E_{0} and a are real +positing take a to be the imaginary part of a complex K nectar

$$
\begin{aligned}
\tilde{k}=k+i a & \text { then } \quad e^{i \tilde{k} z}=e^{i k z} e^{-a z} \text { as above } \\
\vec{E} & =E_{0} e^{i(\tilde{k} z-\omega t)} \hat{y}
\end{aligned}
$$

since this is traveling in the z direction, $E \times B$ mustpanitinn so, B must be in $-\vec{x}$

$$
\vec{B}=B_{0} e^{i(\tilde{k} z-\omega t)}(-\hat{x}) t^{3 p t s}
$$

From Maxwell, $\nabla \times E=-\frac{\partial B}{\partial t}$

$$
\begin{aligned}
& \begin{aligned}
\nabla x E & =-\frac{\partial}{\partial z} E_{y} \hat{x}+\underbrace{\frac{\partial}{\partial x} E_{y} \hat{z}^{\hat{2}}}_{=0} \quad \frac{\partial B_{x}}{\partial t}=-i \omega B_{x} \\
& =i \tilde{k} E_{y}
\end{aligned} \\
& \begin{array}{ll}
=i \tilde{k} E_{y} & \Rightarrow \quad \\
B_{x}=\frac{\tilde{F}}{\omega} E_{y} \quad \text { so } \quad i \tilde{k} E_{y}=i \omega B_{x} \\
\tilde{k}=\frac{\kappa}{\omega} E_{0} \quad 3 \text { pts }
\end{array} \\
& \begin{array}{ll}
\left.\begin{array}{ll}
-i \tilde{k} E_{y} & \\
B_{x}=\frac{\tilde{K}}{\omega} E_{y} \quad \text { so } \quad i \tilde{K} E_{y}=i \omega B_{x} \\
\tilde{K}=\frac{\tilde{K}}{\omega} E_{0} & 3 \text { pts }
\end{array}\right]=\frac{\tilde{k} z-\omega t)}{}
\end{array} \\
& \vec{B}=\frac{\tilde{k}}{\omega} E_{0} e^{i\left(\tilde{k}^{2}-\omega t\right)}(-\hat{x})
\end{aligned}
$$

We still heed to salve for B_{0}
time average
b. for complex fields, $\langle\vec{s}\rangle^{t}=\operatorname{Re}\left[\frac{1}{2} \vec{E} \times \overrightarrow{H^{*}}\right]$

So the cosy way to do this is to play in.

$$
\begin{aligned}
\langle\vec{s}\rangle & =\frac{1}{2} R_{e}\left[E_{0} e^{-a z} e^{i(k z-\omega t)} \tilde{k}^{* *} E_{0} e^{-a z} e^{-i(k z-\omega t)}\right]=\frac{1}{2 \mu} E_{0}^{2} e^{-2 a z} R_{e}\left[\frac{K^{*}}{\omega}\right] \\
& =\frac{1}{2 \mu} \frac{k}{\omega} E_{0}^{2} e^{-2 a z} \hat{z}_{2}
\end{aligned}
$$

if you did not know about $\langle\vec{s}\rangle=\frac{1}{2} R e \vec{E} \times \vec{H}^{*}$ complex and you used the instantareaus Poynting vector $\vec{S}=\vec{E} \times \vec{B}$ the algebra is move intensive, mearitis...
b. longer way

$$
\vec{S}=\frac{1}{\mu} \vec{E} \times \vec{B}=+\frac{E_{0}^{2}}{\mu \omega} e^{-2 a_{2}} \hat{z}\left[k \cos ^{2}\left(k_{2}-\omega t\right)-a \cos \left(k_{2}-\omega t\right) \sin \left(k_{2}-\omega t\right)\right]
$$

Now, time average the two terms

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos ^{2} x d x=\frac{1}{2} \quad \frac{1}{2 \pi} \int_{0}^{2 \pi} \sin x \cos x=0
$$

so, $\langle\vec{s}\rangle=\frac{E_{0}^{2}}{2 \mu} \frac{k}{\omega} e^{-2 a_{2}} \hat{z}$
c. $\nabla \cdot s+\frac{\partial}{\partial t}\left(u_{\text {reach }}+u_{\text {field }}\right)=0$
ency density
absorbed $\quad \begin{array}{r}0 \text { since the fields }\end{array}$

$$
\frac{\partial}{\partial t}\left(u_{\text {reach }}\right)=-\nabla \cdot s=-(-2 a) \frac{E_{0}^{2}}{2 \mu} \frac{k}{\omega} e^{-2 a z}
$$

$\frac{\partial \text { urea }}{d t}=E_{0}^{2} \frac{a k}{\mu \omega} e^{-2 a z}$

$$
\begin{aligned}
& \vec{E}=R_{e} E_{0} e^{-a z} e^{i(k z-\omega t)} \vec{y} \quad \vec{B}=\operatorname{Re}\left[-\frac{K}{\omega} E_{0} e^{-a z} e^{i(K z-\omega t)}\right. \\
& =E_{0} e^{-a z} \cos (k z-\omega t) \hat{y}=\pi e \frac{-E_{0}}{\omega}(k+i a) e^{-\frac{a z}{x}}\left(\cos (\pi z-\omega t)+i \sin \left(k_{2}-\omega t\right)\right) \\
& =-\frac{E_{0}}{\omega} e^{-\alpha_{2}} \hat{x}\left[K \cos \left(k_{2}-\omega t\right)-\dot{a} \sin \left(k_{2}-\omega t\right)\right]
\end{aligned}
$$

Problem 4

Let $\phi=R(2) S(y)$

$$
\nabla^{2} \phi=0 \quad \Rightarrow \quad \frac{1}{R} \frac{\partial^{2} R}{\partial z^{2}}+\frac{1}{s} \frac{\partial^{2} s}{\partial y^{2}}=0
$$

so each tan must be constant.
We knew the solution oscillates in y so pick ngatithe castant for s

$$
\frac{1}{s} \frac{\partial^{2} s}{\partial y^{2}}=-m^{2} \quad \frac{1}{R} \frac{\partial^{2} R}{\partial z^{2}}=m^{2}
$$

solutions are $\phi(z, y)=\sum_{m}\left(A_{m} \cos (m y)+B_{n} \sin (m y)\right)\left(c_{m} \cosh m z+D_{n} \sin i n y\right)$
we know ϕ is odd in z and evan in y, so

$$
\phi(z, y)=A_{m} \cos (m y) \sinh (m z)
$$

at $z= \pm d / 2$

$$
\phi\left(\pm \frac{d}{2}, y\right)=A_{n} \cos (m y) \sinh \left(\pm n \frac{d}{2}\right)= \pm V \cos (k y)
$$

we see $A_{M} \sinh \left(\pm M \frac{d}{2}\right)= \pm V$ and $K=m$

$$
\begin{gathered}
A_{m}=\frac{V}{\sinh \left(k \frac{d}{2}\right)} \\
\phi(z, y)=\frac{V}{\left.\sinh \left(\frac{k d}{2}\right) \cos (k y) \sinh (k z)\right]} \\
\vec{E}=-\nabla \phi=-\frac{V k}{\sinh \left(\frac{k d}{2}\right)}[\cosh (k z) \cos (k y) \hat{z}-\sinh (k z) \sin (k y) \hat{y}]
\end{gathered}
$$

Problem 5

a. Monopole $=0$ because total charge is zero dipole: by symmetry $P_{x}=P_{2}=0$

$$
\begin{aligned}
& \vec{P}=\int \vec{x}^{\prime} \rho\left(x^{\prime}\right) d^{3} x \\
& P_{y}= \pm \lambda \int y a d \phi \\
&=\lambda a\left[\int_{0}^{\pi} y d \phi-\int_{\pi}^{2 \pi} y d \phi\right]=\lambda a^{2}\left[\int_{0}^{\pi} \sin \phi-\int_{\pi}^{2 \pi} \sin \phi\right] \\
&\left.=2 \lambda a^{2}\left[\int_{0}^{\pi} \sin \phi\right]=4 \lambda a^{2}\right] \\
& P_{y}=4 \lambda a^{2}
\end{aligned}
$$

$$
4 p+s
$$

Quadrupole: $\quad Q_{i j}=\int\left[3 x_{i} x_{j}-r^{\prime 2} \delta_{i j}\right] \rho\left(\vec{r}^{\prime}\right) d^{3} x$
write the charge density in terms of δ fuss

$$
\begin{array}{ll}
\rho(\vec{r})= \pm N \cdot \lambda \delta(r-a) \delta(\cos \theta) & +\operatorname{ta} y>0 \\
& -\operatorname{tar} y<0
\end{array}
$$

here N is a manmalization I always hove to solve for.
If we integrate g in the top halt of the plane, we should get T ad
So, $q_{\text {Top }}=\pi a \lambda=\int_{\text {topholf }} \rho(\vec{x}) r^{2} \sin \theta d r d \theta d \phi$

$$
\begin{aligned}
& =\lambda N \int \delta(r-a) \delta(\cos \theta) r^{2} \sin \theta d \ln d \theta d \phi \\
& =\lambda N a^{2} \pi \\
& \text { so } \quad N=\frac{1}{a}
\end{aligned}
$$

$$
D(\vec{x})= \pm \frac{\lambda}{a} \delta(r-a) \delta(\cos \theta)
$$

$$
Q_{i j}=\int\left[3 x_{i} x_{j}-r^{\prime 2} d i j\right] \pm \frac{\lambda}{a} \delta(r-a) \delta(\cos \theta) r^{2} \sin \theta d r d \theta d \phi
$$

$Q_{x z}=Q_{z x}=Q_{y z}=Q_{z y}=0$ because $\delta_{i j}=0$ and $\delta(\cos \theta)$ forces $z=0$

$$
Q_{x y}=Q_{y x}=\int\left[3 r^{2} \sin ^{2} \theta \cos \phi \sin \phi\right] \pm \frac{\lambda}{a} \delta(r-a) \delta(\cos \theta) \sin \theta r^{2} d d \theta d \phi
$$

$$
\begin{aligned}
& =\frac{\lambda}{a} a^{4}\left[\int_{0}^{\pi} 3 \cos \varphi \sin \varphi d \phi-\int_{\pi}^{2 \pi} 3 \cos \varphi \sin \varphi d \phi\right] \\
& =0
\end{aligned}
$$

each integral is zero

$$
\begin{array}{r}
Q_{x x}=\frac{\lambda}{a} a^{4}\left[\int_{0}^{\pi}\left(3 \cos ^{2} \phi-1\right) d \phi-\int_{\pi}^{2 \pi}\left(3 \cos ^{2} \phi-1\right) d \phi\right] \\
\int_{0}^{\pi}\left(3 \cos ^{2} \phi-1\right) d \phi-\int_{0}^{\pi}\left(3 \cos ^{2} \varphi-1\right) d \phi \\
=0 \\
Q_{y y}=\frac{1}{a} a^{4}\left[\int_{0}^{\pi}\left(3 \sin ^{2} \phi-1\right) d \phi-\int_{\pi}^{2 \pi}\left(3 \sin ^{2} \phi-1\right) d \phi\right]=0 \\
Q_{Z 2}=\frac{-\lambda}{a} a^{4}\left[\int_{0}^{\pi} 1 d \phi-\int_{\pi}^{2 \pi} d \phi\right]=0 \quad Q_{i j}=0 \quad \text { for all } i, j
\end{array}
$$

$$
Q_{y y}=\frac{1}{a} a^{4}\left[\int_{0}^{\pi}\left(3 \sin ^{2} \phi-1\right) d \phi-\int_{\pi}^{2 \pi}\left(3 \sin ^{2} \phi-1\right) d \phi\right]=0 \quad \text { by same argonne }
$$

b. the dipole term is the first term, which me already have. Since there is no Quadrupole term, me weed to find the octerole tern.
Now, we could solve $q_{e_{m}}=\int y_{l n}^{*}\left(\theta^{\prime}, \phi^{\prime}\right) r^{\prime l} \rho\left(x^{\prime}\right) d^{3} x$ for all m
but that is long. I'm going to toke another approach.

$$
\phi=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho}{\left|x-x^{\prime}\right|} d^{3} x \quad\left|x-x^{\prime}\right|=\left[\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(2-z^{\prime}\right)^{2}\right]^{1 / 2} \text { etc... }
$$

from low of cosine $\left|x-x^{\prime}\right|^{2}=r^{2}+a^{2}-2 r a \cos \gamma-\cos \gamma=\cos \theta_{1} \cos \theta_{2}+\sin \theta_{1} \sin \theta_{2} \cos \left(\phi_{1}-\alpha_{2}\right)$. angle betmen the vectors
for us, let $\left.\begin{array}{ll}\theta_{1}=\theta \\ \theta_{2}=\theta^{\prime}=\frac{\pi}{2} & \begin{array}{l}\phi_{1}=\phi \\ \phi_{2}\end{array}=\phi^{\prime}\end{array}\right\} \quad \cos \gamma=\sin \theta \cos \left(\phi-\phi^{\prime}\right)$

$$
\begin{array}{ll}
\phi=\frac{\lambda}{4 \pi \varepsilon_{0}}\left[\int_{0}^{\pi} \frac{a d \phi}{\left|x-x^{\prime}\right|}-\int_{\pi}^{2 \pi} \frac{a d \phi}{\left|x-x^{\prime}\right|}\right] \quad & \text { let us expand } \frac{1}{\left|x-x^{\prime}\right|} \\
\frac{1}{\left|x-x^{\prime}\right|}=\frac{1}{r}[1+\underbrace{\frac{a^{2}}{r^{2}}-\frac{2 a}{r} \cos \gamma}_{\text {small paranetr}}]^{-1 / 2} \quad \phi_{2}=\phi^{\prime}\} \quad \cos \gamma=\sin c \\
& (1+\varepsilon)^{-1 / 2}=1-\frac{\varepsilon}{2}+\frac{3}{8} \varepsilon^{2}-\frac{15}{48} \varepsilon^{3}
\end{array}
$$

small porametes ε
Since we want the octupole term we expound $\frac{1}{\left|x-x^{\prime}\right|}$ to $\frac{1}{r^{4}}$, we want all terms in the expansion to $\frac{1}{r^{3}}$, so up to ε^{3}

$$
\varepsilon=\frac{a^{2}}{r^{2}}-\frac{2 a}{r} \cos \gamma
$$

$$
\varepsilon^{2}=\frac{a^{4}}{r^{4}}-4 \frac{a^{3}}{r^{3}}+4 \frac{a^{2}}{r^{2}} \cos ^{2} y
$$

\}only need op to $\frac{1}{r^{3}}$ tenons

$$
\varepsilon^{3}=4 \frac{a^{4}}{r^{4}}\left(\cos ^{2} \gamma+2 \cos \gamma\right)-\frac{8 a^{3}}{r^{3}} \cos ^{3} \gamma
$$

I wrote up to $\frac{1}{r^{4}}$ though
since we only cone abut octupale you onlyneed this term,

$$
\left[1+\frac{a^{2}}{r^{2}}-\frac{2 a}{r} \cos r\right]^{-1 / 2} \approx 1+\frac{a}{r} \cos \gamma+\frac{a^{2}}{r^{2}}\left(-\frac{1}{2}+\frac{3}{2} \cos ^{2} \gamma\right)+\frac{a^{3}}{r^{3}}\left(-\frac{3}{2}+\frac{5}{2} \cos ^{3} \gamma\right)+\ldots
$$

but I will do all terms just for thouraughness
doing the some substitution above, the integrals one identical and

$$
=0 \quad \text { Quadrupole }=0
$$

This is the only term you needed to do:

$$
\begin{aligned}
\phi_{3}=\frac{t a}{4 \pi \varepsilon_{0} r}\left(\frac{a^{3}}{2 r^{3}}\right)[& {[\underbrace{\left[\begin{array}{l}
0 \\
\int_{0}^{\pi}\left(-3+5 \cos ^{3} \gamma\right)-\int_{\pi}^{2 \pi}\left(-3+5 \cos ^{3} \gamma\right)
\end{array}\right]}} \\
& 2 \int_{0}^{\pi} 5 \cos ^{3} \gamma d \phi^{\prime}=10 \sin ^{3} \theta \int_{0}^{\pi} \cos ^{3}\left(\phi-\phi^{\prime}\right) d \phi^{\prime}
\end{aligned}
$$

some substitution the -3 terms cancel the $\cos ^{3} \gamma$ terms add

$$
\begin{aligned}
\int_{0}^{\pi} \cos ^{3}\left(\phi-\phi^{\prime}\right) d \phi & =-\int \cos \left(\sin ^{2}-1\right)=\int_{0}^{\pi} \cos \left(\phi-\phi^{\prime}\right) d \phi-\int \cos \left(\phi-\phi^{\prime}\right) \sin ^{2}\left(\phi-\phi^{\prime}\right) \\
& =\int_{\phi}^{\phi-\pi}-\cos u d u+\int_{\sin \phi}^{\sin ^{2}-\pi} u=\phi-\phi^{\prime}
\end{aligned}
$$

$$
=\frac{\lambda a^{4}}{4 \pi \varepsilon_{0} r^{4}}{ }^{10 \sin ^{3} \theta}\left(\sin \phi-\frac{1}{3} \sin ^{3} \phi\right)
$$

5 pts for this octupale... finally

$$
\begin{aligned}
& \phi_{0}=\frac{\lambda a}{4 \pi \varepsilon_{0}} \frac{1}{r} \int\left[1+\frac{a^{2}}{r^{2}}-\frac{2 a}{r} \cos \gamma\right]^{-1 / 2} \\
& \phi_{0}=\frac{1 a}{4 \pi \varepsilon_{0}} \frac{1}{r} \quad \int \pm 1 d \phi^{\prime}=\frac{1 a}{4 \pi \varepsilon_{0} r}\left[\int_{0}^{\pi} d \phi-\int_{\pi}^{2 \pi} d \phi^{\prime}\right]=0 \\
& \phi_{1}=\frac{\lambda a}{4 \pi \varepsilon_{0} r}\left(+\frac{a}{r}\right)\left[\int_{0}^{\pi} \cos \gamma d \phi^{\prime}-\int_{\pi}^{2 \pi} \cos \gamma d \phi^{\prime}\right] \\
& \text { maopol }=0 \\
& \cos \gamma=\sin \theta \cos \left(\phi-\phi^{\prime}\right) \\
& \text { let } u=\phi^{\prime}-\pi \\
& d u=d \phi^{\prime} \\
& \cos \left(\phi-\phi^{\prime}\right) \rightarrow-\cos (\phi-\alpha) \\
& \cos \gamma \rightarrow-\cos \gamma \text { for } \phi^{\prime} \rightarrow \phi^{\prime}-\pi \\
& {\left[\int_{0}^{\pi} \cos \gamma d \phi-\int_{\pi}^{\pi \pi} \cos \gamma \phi \phi\right]=2 \int_{0}^{\pi} \cos \gamma=2 \sin \theta \underbrace{\int_{0}^{\pi} \cos \left(\phi-\phi^{\prime}\right) d \phi^{\prime}}_{+2 \sin \phi}=+4 \sin \theta \sin \phi} \\
& \begin{array}{l}
=\frac{\lambda a^{2}}{4 \pi \varepsilon_{0} r^{2}} 4 \sin \theta \sin \varphi=\frac{4 \lambda a^{2}}{4 \pi \varepsilon_{0} r^{2}} \sin \theta \sin \phi \\
=\frac{\lambda_{a}}{4 \pi \varepsilon_{0} r} \frac{a^{2}}{2 r^{2}}\left[\int_{0}^{\pi}\left(-1+3 \cos ^{2} \gamma\right) d \phi^{\prime}-\int_{\pi}^{2 \pi}\left(-1+3 \cos ^{2} \gamma\right) d \phi^{\prime}\right]
\end{array} \\
& { }^{2} \text { pts } \\
& \text { dipole } \frac{\vec{p} \cdot \hat{x}}{4 \pi \varepsilon_{0} r^{2}} \quad P_{y}=4+a^{2} \\
& \text { soma as } \\
& \text { before }
\end{aligned}
$$

$5 b$. casien way.
So I just realized the expansion I just did is...

$$
\begin{aligned}
& \frac{1}{\left|x \in x^{\prime}\right|}=\frac{1}{r}[\underbrace{1}_{P_{0}}+\underbrace{\frac{a}{r}}_{P_{1}} \underbrace{\cos \gamma}_{P_{1}}+\frac{a^{2}}{r^{2}}(\underbrace{}_{P_{P_{3}}^{-\frac{1}{2}+\frac{3}{2} \cos ^{2} \gamma}})+\frac{a^{3}}{r^{3}}(\underbrace{-\frac{3}{2}}+\frac{5}{2} \cos ^{3} \gamma)+\cdots] \\
& =\sum_{l} \frac{r_{l}^{l}}{r_{l}^{l+1}} P_{l}(\cos \gamma)
\end{aligned}
$$

ugh, all that algebra to no reason, I'm dumb.
All you needed to do then is take $l=3$ of

$$
\begin{aligned}
\phi_{l}=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{1 \lambda}{\left|x-x^{\prime}\right|}=\frac{1}{4 \pi \varepsilon_{0}} \sum_{l} \frac{a^{l}}{r^{l+1}} & {\left[\int_{0}^{\pi} P_{l} d l^{\prime}-\int_{\pi}^{2 \pi} P_{l} d l^{\prime}\right] } \\
& {\left[\int_{0}^{\pi} P_{l}(\cos \gamma)-\int_{0}^{\pi} P_{l}(-\cos \gamma)\right] }
\end{aligned}
$$

remember $P_{l}(t)$ is even P_{a} even l

$$
\phi=\frac{\lambda}{4 \pi \varepsilon_{0}} \frac{2}{r} \sum_{l o d d}\left(\frac{a}{r}\right)^{l} \int_{0}^{\pi} P_{l}(\cos \gamma) d \phi^{\prime}
$$

Problem 6
a.

$$
\begin{aligned}
& \vec{L}=\int \vec{l}_{\text {field }}=\frac{\varepsilon_{0} \mu_{0}}{\mu} \int \vec{r} \times[\vec{E} \times \vec{B}] d^{3} \times \\
& \vec{E}=\frac{Q}{2 \pi \varepsilon L} \quad \frac{1}{\rho} \hat{\rho} \\
& =\frac{\varepsilon_{0} \mu_{0} B Q}{\mu \cdot 2 \pi \varepsilon L} \int \frac{1}{\rho} \vec{r} \times[\underbrace{\hat{\rho} \times \hat{2}}_{-\hat{\phi}}] \\
& \vec{B}=B_{0} \hat{z} \\
& =-\frac{\varepsilon_{0} \mu_{0}}{\mu \varepsilon} \frac{B Q}{2 \pi L} \int \frac{d z}{\rho} \rho d \rho d \phi\left[\rho \cos ^{2} \phi+\rho \sin ^{2} \phi\right] \hat{z} \\
& \int d z d \rho d \varphi \rho \hat{z} \\
& =\left.\frac{-\varepsilon_{0} \mu_{0}}{\varepsilon \mu} \frac{B Q}{2 \pi L} L \cdot 2 \pi \frac{\rho^{2}}{2}\right|_{a} ^{b} \\
& =-\frac{\varepsilon_{0} \mu_{0}}{\varepsilon \mu} \frac{B Q}{2}\left(b^{2}-a^{2}\right) \hat{z} \\
& \vec{r} \times \hat{q}=(x \hat{x}+y \hat{y}+2 \hat{z}) \times(-\sin \phi \hat{x}+\cos \phi \hat{y})
\end{aligned}
$$

$$
\begin{aligned}
& \rho \cos \phi \quad \rho \sin \phi \\
& \text { zero bic. of } \phi
\end{aligned}
$$

this angular momentum all gets tronstand to tho cylinch

$$
I \omega=L \quad \vec{\omega}=-\frac{B Q}{2 I} \frac{\varepsilon_{0} \mu_{0}}{\varepsilon \mu}\left(b^{2}-a^{2}\right) \hat{z}
$$

b. We ignore angubs momentum lost to radiation.

Midterm Exam (100 points in total)

- Closed books and closed notes
- Please write down the necessary intermediate steps
- Write your answers in the space provided. Continue on the back if necessary.
- A formula sheet is provided at the end of the exam.
Name:___ ID:

Problem 1: \qquad

Problem 2: \qquad

Problem 3: \qquad

Problem 4: \qquad

Total:

1. (a) A charged sphere of radius a has a uniform charge density within its volume with a total charge Q. Calculate the electric fields inside and outside the sphere. (10 points)
(b) Assume the charge density distribution in (a) is spherically symmetric and varies radially as $r^{n}(n>-3)$. Calculate the electric fields inside and outside the sphere. (10 points)
(b) In a vacuum diode, electrons are boiled off a hot cathode, at potential zero, and accelerated across a gap to the anode, which is held at positive potential V_{0} (see the figure below). The cloud of moving electrons within the gap (called the space charge) quickly builds up to the point where it reduces the field at the surface of the cathode to zero. From then a steady current I flows between the plates. Suppose the plates are large relative to the separation $\left(A \gg d^{2}\right)$, so that edge effects can be neglected. Then V, ρ, and v (the speed of the electrons) are all functions of x alone.
a. Assuming the electrons start from rest at the cathode, what is their speed at point x, where the potential is $V(x)$? (5 points)
b. In the steady state, I is independent of x. What is the relation between ρ and v ? (5 points)
c. Use the results in (a) and (b) to obtain a differential equation for V, by eliminating ρ and v. (5 points)
d. Solve this equation for V as a function of x, V_{0} and d. (Hint: you may use the identity, $\left.\frac{d \Phi}{d x} \frac{d^{2} \Phi}{d x^{2}}=\frac{1}{2} \frac{d}{d x}\left(\frac{d \Phi}{d x}\right)^{2}.\right)(10$ points $)$
e. Show that $I=k V_{0}^{3 / 2}$ and find the constant k. This equation is called the Child-Langmuir law. It holds for other geometries as well, whenever space-charge limits the current. Notice that the space-charge limited diode is nonlinear and doesn't obey the Ohm's law.) (5 points)

(c) A sphere of radius a has a surface charge density $\sigma=\sigma_{0} \cos (2 \theta)$. Find the potential at all points in space exterior and interior to the sphere. (25 points)
(d) Consider the infinite two-dimensional conducting plane depicted in the figure below. The right half is maintained at electrostatic potential V_{0} while the left half is maintained at potential $-V_{0}$. Calculate the potential above the plane. (25 points)

$$
-\mathrm{V}_{0} \quad \mathrm{~V}_{0}
$$

Formula Sheet for Midterm

I decided to provide you most the equations in Chapters 1-3 (much more than you need in the midterm). I want you to understand the physics instead of memorizing the equations.
(i) Rectangular coordinates

$$
\nabla^{2} \Phi(x, y, z)=0 \quad \begin{array}{ll}
\Phi(x, y, z) \sim e^{ \pm i k_{x} x} e^{ \pm i k_{y} y} e^{ \pm k_{z} z} \\
& k_{z}^{2}=k_{x}^{2}+k_{y}^{2}
\end{array}
$$

(ii) 2D Polar Coordinates
$\Phi(r, \varphi)=a_{0}+b_{0} \ln r+\sum_{n=1}^{\infty}\left[a_{n} r^{n} \sin \left(n \varphi+\alpha_{n}\right)+b_{n} r^{-n} \sin \left(n \varphi+\beta_{n}\right)\right]$
(iii) Spherical Coordinates with azimuthal symmetry ($\mathrm{m}=0$)
$\Phi(r, \theta)=\sum_{l=0}^{\infty}\left[A_{l} r^{l}+\frac{B_{l}}{r^{l+1}}\right] P_{l}(\cos \theta)$

$$
\int_{-1}^{1} P_{l}(x) P_{l^{\prime}}(x) d x=\frac{2}{2 l+1} \delta_{l l^{\prime}}
$$

$$
P_{0}(x)=1 \quad P_{1}(x)=x \quad P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right) \quad P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right)
$$

(iv) Spherical coordinates $(\mathrm{m} \neq 0)$

$$
\begin{aligned}
& \vec{F}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r^{2}} \hat{r} \quad \vec{E}=-\vec{\nabla} \Phi \quad \vec{\nabla} \cdot \vec{E}=\frac{\rho}{\varepsilon_{0}} \quad \nabla^{2} \Phi=-\frac{\rho}{\varepsilon_{0}} \\
& \vec{E}=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\hat{r}}{r^{2}} \rho\left(\vec{x}^{\prime}\right) d V^{\prime} \quad \Phi=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho\left(\vec{x}^{\prime}\right)}{r} d V^{\prime} \quad W=\frac{1}{2} \int \rho \Phi d V=\frac{\varepsilon_{0}}{2} \int|E|^{2} d V \\
& C=\frac{Q}{V} \quad W=\frac{1}{2} C V^{2} \quad \Phi_{1}=\Phi_{2} \quad \frac{\partial \Phi_{2}}{\partial n}-\frac{\partial \Phi_{1}}{\partial n}=-\frac{\sigma}{\varepsilon_{0}} \\
& \nabla^{2} G\left(\vec{x}, \vec{x}^{\prime}\right)=-4 \pi \delta\left(\vec{x}-\vec{x}^{\prime}\right) \quad G\left(\vec{x}, \vec{x}^{\prime}\right)=\frac{1}{\left|\vec{x}-\vec{x}^{\prime}\right|}+F\left(\vec{x}, \vec{x}^{\prime}\right) \\
& \Phi=\frac{1}{4 \pi \varepsilon_{0}} \int_{V} G_{D}\left(\vec{x}, \vec{x}^{\prime}\right) \rho\left(\vec{x}^{\prime}\right) d V^{\prime}-\frac{1}{4 \pi} \oint_{S} \Phi \frac{\partial G_{D}\left(\vec{x}, \vec{x}^{\prime}\right)}{\partial n^{\prime}} d a^{\prime} \\
& \Phi=\frac{1}{4 \pi \varepsilon_{0}} \int_{V} G_{N}\left(\vec{x}, \vec{x}^{\prime}\right) \rho\left(\vec{x}^{\prime}\right) d V^{\prime}+\frac{1}{4 \pi} \oint_{S} G_{N}\left(\vec{x}, \vec{x}^{\prime}\right) \frac{\partial \Phi}{\partial n^{\prime}} d a^{\prime} \\
& \frac{1}{\left|\vec{x}-\vec{x}^{\prime}\right|}=4 \pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{1}{2 l+1} \frac{r_{<}^{l}}{r_{>}^{l+1}} Y_{l}^{m^{*}}\left(\theta^{\prime}, \varphi^{\prime}\right) Y_{l}^{m}(\theta, \varphi) \\
& a_{0}=\frac{1}{L} \int_{-L}^{L} f(x) d x \\
& f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n \frac{\pi x}{L}+\sum_{n=1}^{\infty} b_{n} \sin n \frac{\pi x}{L} \quad a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos n \frac{\pi x}{L} d x \\
& b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin n \frac{\pi x}{L} d x \\
& g(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i k x} d x \quad f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} g(k) e^{i k x} d k
\end{aligned}
$$

$\Phi(r, \theta, \varphi)=\sum_{l=0}^{\infty} \sum_{m=-l}^{m}\left[A_{l}^{m} r^{l}+\frac{B_{l}^{m}}{r^{l+1}}\right] Y_{l}^{m}(\theta, \varphi) \quad \int Y_{l}^{m}(\theta, \varphi) Y_{l^{\prime \prime *}}^{m^{*}}(\theta, \varphi) d \Omega=\delta_{l l} \delta_{m m^{\prime}}$
(v) Cylindrical Coordinates

$$
\Phi(r, \varphi, z)=\sum_{v=0}^{\infty}\left[A_{v} J_{v}(k r)+B_{v} N_{v}(k r)\right] e^{ \pm i v \varphi} e^{ \pm k z} \int_{0}^{a} r J_{v}\left(\frac{x_{v n^{\prime}} r}{a}\right) J_{v}\left(\frac{x_{v n} r}{a}\right) d r=\frac{a^{2}}{2}\left[J_{v+1}\left(x_{m}\right)\right]^{2} \delta_{n n^{\prime}}
$$

la.

$$
\rho=\frac{Q}{\frac{4}{3} \pi R^{3}}
$$

$$
\begin{aligned}
& E_{\text {in }} 4 \pi r^{2}=\frac{\rho \cdot \frac{4}{3} \pi r^{3}}{\varepsilon_{0}} \\
& \begin{aligned}
E_{\text {in }} & =\frac{\pi}{3} \frac{r}{\varepsilon_{0}} \rho \\
& =\frac{r}{3 \varepsilon_{0}} \frac{Q}{4} \pi R^{3} \\
& =\frac{Q}{3 \pi \varepsilon_{0}}
\end{aligned} \frac{\frac{1}{R^{3}}}{}
\end{aligned}
$$

$$
E_{\text {out }}=\frac{Q}{4 \pi \varepsilon_{0}} \frac{1}{f^{2}}
$$

16.

$$
\begin{aligned}
& \rho=\rho_{0} r^{n} \\
& Q=\int \rho d^{3}+=4 \pi \int \rho_{0} r^{n} r^{2} d n=4 \pi \rho_{0} \int_{0}^{R} r^{n+2} d x \\
&=4 \pi \rho_{0} \frac{R^{n+3}}{n+3} \quad Q=\frac{4 \pi \rho_{0}}{n+3} R^{n+3} \\
& \rho_{0}=\frac{(n+3) Q}{4 \pi R^{n+3}}
\end{aligned}
$$

$$
4 \pi r^{2} E_{\text {in }}=\frac{4 \pi}{\varepsilon_{0}} \int_{0}^{r} \rho^{2} c^{2} h=\frac{4 \pi}{\varepsilon_{0}} \rho_{0} \frac{r^{n+3}}{(n+3)}=\frac{Q}{\varepsilon_{0}} \frac{r^{n+3}}{R^{n+3}}
$$

$$
E_{\text {in }}=\frac{Q}{4 \pi \varepsilon_{0}} \quad \frac{r^{n+1}}{R^{n+3}}
$$

$$
E_{\text {out }}=\frac{Q}{4 \pi \varepsilon_{0}} \frac{1}{r^{2}}
$$

2.

a.

$$
\begin{aligned}
\frac{1}{2} M V^{2} & =q V(x) \\
V & =\sqrt{\frac{2 q V(x)}{M}} \quad V=\frac{1}{2} \frac{m}{q} v^{2}
\end{aligned}
$$

b.
so, $\int_{-j}=\frac{I}{q A} \frac{1}{V(x)}$ on $\rho=\frac{I}{A} \frac{1}{V(x)}$
c. $\nabla^{2} v=-\frac{\rho}{\varepsilon_{0}}$

$$
\begin{aligned}
& \frac{\partial^{2} V}{\partial x^{2}}=\frac{q}{\varepsilon_{0}} \rho_{N} \\
& \frac{\partial^{2}}{\partial x^{2}} V=-\frac{q}{\varepsilon_{0}} \frac{I}{q A} \frac{1}{2(x)} \\
&=-\frac{I}{A \varepsilon_{0}} \sqrt{\frac{M}{2 q V(x)}} \\
&=-\frac{I}{A \varepsilon_{0} \sqrt{\frac{M}{2 q}}} \quad V^{-1 / 2}
\end{aligned}
$$

$$
\frac{\partial^{2} v}{\partial x^{2}}=-k v^{-1 / 2}
$$

d. Solve T with boundary conditions $V(0)=0, V(d)=V_{0}$

Guess $\quad V(x)=C \cdot x^{2}$

$$
\begin{aligned}
\frac{\partial v}{\partial x} & =\operatorname{cv} x^{v-1} \\
\frac{\partial^{2} v}{\partial x^{2}} & =\operatorname{cv}(v-1) x^{v-2} \\
c v(v-1) x^{v-2} & =-k\left[c x^{2}\right]^{-1 / 2}=-k c^{-1 / 2} x^{-v / 2}
\end{aligned}
$$

2
Thus:

$$
x^{2-2}=x^{-2 / 2}
$$

and $\quad C v(v-1)=-k c^{-1 / 2}$

$$
v-2=\frac{-v}{2}
$$

$$
2 v-4=-2^{2}
$$

$$
3 v=4
$$

$$
v=4 / 4
$$

$$
\begin{aligned}
c^{3 / 2} \frac{4}{3}\left(\frac{1}{3}\right) & =-k \\
c^{3 / 2} & =-k \frac{9}{4}
\end{aligned}
$$

$$
c=\left(-k \frac{9}{4}\right)^{2 / 3}
$$

$$
\begin{aligned}
V(x) & =\left(\frac{81}{16} \kappa^{2}\right)^{1 / 3} x^{4 / 3} \\
& =\left(\frac{81}{16} \frac{I^{2}}{A^{2} \varepsilon_{0}}=\frac{M}{2 q}\right)^{1 / 3} x^{4 / 3} \\
V(d) & =V_{0}=\left(\frac{81}{16} \frac{I^{2}}{4^{2} \varepsilon_{0} 2} \frac{M}{2 q}\right)^{1 / 3} d^{4 / 3} \\
V(x) & =\frac{V_{0}}{d^{4 / 3}} x^{4 / 3}=V_{0}\left(\frac{x}{d}\right)^{4 / 3}
\end{aligned}
$$

e.
solve for I:

$$
\begin{aligned}
& \quad\left(\frac{v_{0}}{d / 3 / 3}\right)^{3}=\frac{81}{16} \frac{I 2}{A^{2} \varepsilon_{0}^{2}}=\frac{M}{2 q} \\
& I^{2}=\frac{32}{81} \pi^{2} \varepsilon_{0}^{2} \frac{q}{M}\left(\frac{v_{0}^{3}}{d^{4}}\right) \\
& I=\sqrt{\frac{32}{81} \pi^{2} \varepsilon_{0}^{2} \frac{q}{M} \frac{1}{d 4}} v_{0}^{3 / 2} \\
& I=\frac{4}{q} \frac{A \varepsilon}{d^{2}} \sqrt{\frac{2 q}{M}} v_{0}^{3 / 2}
\end{aligned}
$$

Metal 1: Sop of Van
3.

$$
\begin{align*}
& \sigma= \sigma_{0} \cos (2 \theta) \\
& \phi_{\text {out }}= \sum_{l} \frac{B_{l}}{r^{2+l}} P_{l} \\
& \phi_{\text {in }}= \sum_{l} A_{l} r^{l} P_{l} \\
& \phi_{\text {in }}=\phi_{\text {out }} \Rightarrow \sum_{l} \frac{B_{l}}{a^{l+1}} P_{l}=\sum_{l} A_{l} a^{l} P_{l} \tag{1}\\
& B_{l}=A_{l} a^{2 l+1}
\end{align*}
$$

$$
\begin{aligned}
& \frac{\partial \phi_{\text {ant }}}{\partial r}-\frac{\partial \phi_{\text {in }}}{\partial r}=-\frac{\sigma}{\varepsilon_{0}} \\
& \sum_{l}-(l+1) \frac{B_{l}}{a^{l+2}} P_{l}-\sum_{l} l A_{l} r^{l-1} P_{l}=-\frac{\sigma_{0}}{\varepsilon_{0}} \cos (2 \theta) \\
& \text { now } \cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta=2 \cos ^{2} \theta-1
\end{aligned}
$$

Recall $P_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2}$

$$
\begin{gathered}
P_{0}(x)=1 \\
2 x^{2}-1=\frac{4}{3} P_{2}(x)-\frac{1}{3} P_{0}(x)
\end{gathered}
$$

So, we have: $\quad \sum_{l}\left[-\frac{(l+1) B_{l}}{a^{l+2}}-l A_{l} a^{l-1}\right] P_{l}=\frac{-\sigma_{0}}{3 \varepsilon_{0}}\left[4 P_{2}(x)-P_{0}(x)\right]$

$$
\text { flog in (1) } \begin{aligned}
& \sum_{l}\left[\frac{-(l+1) A_{l} a^{2 l+1}}{a^{l+2}}-l A_{l} a^{l-1}\right] P_{l} \\
= & \sum_{l} A_{l} a^{l-1}\left[\begin{array}{c}
-(l+1) \\
-2 l
\end{array}\right] \quad P_{l}=-\frac{\sigma_{0}}{3 \varepsilon_{0}}\left[4 P_{2}-P_{0}\right]
\end{aligned}
$$

$A_{l}=0 \quad l \neq 0,1$

$$
\begin{aligned}
& l=0 \quad-A_{0} a^{-1}=\frac{\sigma_{0}}{3 \varepsilon_{0}} \\
& l=2 \quad A_{2} a(-5)=-\frac{4}{3} \frac{\sigma_{0}}{\varepsilon_{0}}
\end{aligned}
$$

3

$$
\text { So } \begin{array}{rlr}
A_{0} & =\frac{-\sigma_{0}}{3 \varepsilon_{0}} a & B_{0}=A_{0} a=\frac{-\sigma_{0}}{3 \varepsilon_{0}} a^{2} \\
A_{2} & =\frac{4 \sigma_{0}}{1 \varepsilon_{0}} \frac{1}{a} & B_{2}=A_{0} \alpha^{5}=4 \sigma_{0} \\
15 & a^{4}
\end{array}
$$

$$
\begin{aligned}
\phi_{i n} & =\frac{\sigma_{0}}{3 \varepsilon_{0}} a+\frac{4}{10} \frac{\sigma_{0}}{\varepsilon_{0}} \frac{r^{2}}{a} P_{2} \\
& =\frac{\sigma_{0} a}{3 \varepsilon_{0}}\left[-1+5 \frac{4}{a^{2}} \cdot P_{2}\right] \\
& =\frac{\sigma_{0} a}{3 \varepsilon_{0}}\left[-1+\frac{2}{5} \frac{r^{2}}{a^{2}}\left(3 \cos ^{2} \theta-1\right)\right] \\
\phi_{\text {aut }} & =-\frac{\sigma_{0}}{3 \varepsilon_{0}} \frac{a^{2}}{r}+\frac{4 \sigma_{0}}{15 \varepsilon_{0}} \frac{a^{4}}{r^{3}} P_{2} \\
& =\frac{\sigma_{0} a^{2}}{3 \varepsilon_{0}} r\left[-1+5 \frac{4}{5} \frac{a^{2} P_{2}}{r^{2}}\right] \\
& =\frac{\sigma_{0} a}{3 \varepsilon_{0}} \frac{a}{r}\left[-1+5 \frac{2}{5} \frac{a^{2}}{r^{2}}\left(3 \cos ^{2} \theta-1\right)\right]
\end{aligned}
$$

3
Method 2: Integration

$$
\begin{array}{rlr}
\Phi=\frac{1}{4 \pi \varepsilon_{0}} & \int_{0}^{\pi} \frac{\sigma d a}{\left|x-x^{\prime}\right|} & \sigma=\sigma_{0} \cos 2 \theta \\
& \int_{0}^{\pi} \frac{\sigma_{0}\left[\frac{4}{3} p_{2}-\frac{1}{3} p_{0}\right] \cdot R^{2} d \phi^{\prime} \sin \theta^{\prime} d \theta^{\prime}}{\left|x-x^{\prime}\right|} & =\sigma_{0}\left[\frac{4}{3} p_{2}-\frac{1}{3} p_{0}\right]
\end{array}
$$

on axis

$$
=\frac{2 \pi R^{2} \sigma_{0}}{4 \pi \varepsilon_{0}} \sum_{l} \int_{0}^{\pi} \sin \theta^{\prime} d \theta^{\prime}\left[\frac{4}{3} P_{2}\left(\cos \epsilon^{\prime}\right)-\frac{1}{3} P_{0}\left(\cos \theta^{\prime}\right)\right] \frac{1}{\left|x-x^{\prime}\right|}=\sum_{l} \frac{r_{2} l}{r_{2} l} r_{2} r_{1} r_{l} P_{e}\left(\cos \theta^{\prime}\right)
$$

leet $x=\cos \theta^{\prime}$ on 2 anis $\cos y \rightarrow \cos \theta^{\prime}$ $d x=-\sin \theta^{\prime} d \theta^{\prime}$

$$
\begin{aligned}
& =\frac{\sigma_{0} R^{2}}{2 \varepsilon_{0}} \sum_{e} \frac{r_{2}^{l}}{r_{7}^{l+1}} \int_{-i}^{1} d x\left[\frac{4}{3} P_{2}(x)-\frac{1}{3} P_{0}(x)\right] P_{e}(x) \\
& \int P_{l} P_{l}=\frac{2}{2 l+1} \delta_{l e^{\prime}} \\
& =\frac{\sigma_{0} R^{2}}{2 \varepsilon_{0}} \sum_{e} \frac{\lambda_{0}^{1}}{x_{l}^{r}+1}\left[\frac{4}{3} \cdot \frac{2}{(2(2)+1) r_{r}^{3}}-\frac{1}{3} \cdot \frac{2}{i} \frac{r_{2}^{0}}{r_{3}^{1}}\right] \\
& =\frac{\sigma R^{2}}{3 \varepsilon_{0}}\left[-1 \frac{r_{2}^{0}}{r_{i}^{\prime}}+\frac{4}{5} \frac{r_{2}^{2}}{r_{>}^{3}}\right] \\
& =\frac{\sigma_{0} R^{2}}{3 \varepsilon_{0}} \frac{1}{r_{>}}\left[-p_{0}+\frac{4}{5} \frac{r_{<}^{2}}{r_{>}^{2}}{ }_{2}^{2}\right] \\
& \text { since this is on axis, } \\
& \text { Multiply by appropriate pa }
\end{aligned}
$$

for $r<R \quad \Phi_{\text {in }}=\frac{\sigma_{0} R}{3 \varepsilon_{0}}\left[-1+\frac{4}{5} \frac{r^{2}}{R^{2}} P_{2}(\cos \theta)\right]$
$r>R \quad \Phi_{\text {at }}=\frac{\sigma_{0} R^{2}}{3 \varepsilon_{0} r}\left[-1+\frac{4}{5} \frac{R^{2}}{r^{2}} P_{2}(\cos \theta)\right]$
4. Method 1: separation of Variables

$$
\begin{gathered}
-V+v \\
\phi(n \phi)=\sum_{N}\left(A_{2} \cos (2 \phi)+B_{2} \sin (v \phi)\right)\left(c_{2} r^{2}+\frac{D_{2}}{r^{2}}\right)
\end{gathered}
$$

$+a_{0}+b_{0} h(r)+c_{0} \phi$ Note since we da ct have $0 \leq \phi \leq 2 \pi$ wove to bean hove to bean
we include $r=0 \Rightarrow b_{0}=0 \quad-b_{r}=0$

$$
\begin{aligned}
& \Phi(r, \phi)=\sum_{v}\left[A_{v} r^{2} \cos (v \phi)+B_{v} r^{2} \sin (v \phi)\right]+a_{0}+\operatorname{co\phi } \\
& \Phi(n, \pi)=-v=\sum_{v}\left[A_{v} r^{2} \cos (v \pi)+B_{v} r^{v} \sin (v \pi)\right]+a_{0}+c_{0} \pi \\
& \Phi(r, 0)=v=\sum_{v}\left[A_{v} r^{2} \cos (0)+B_{v} r^{2} \sin (0)\right]+a_{0}+c_{0}(0)
\end{aligned}
$$

(1) So, $\sum_{v} r^{2}\left[A_{v}\right]+a_{0}=v$
(2) an $\sum_{v} r^{v}\left[A_{v} \cos (v \pi)+B_{v} \sin (v \pi)\right]+a_{0}^{+c_{0} \pi}=-v$

These cont be a function of r

$$
\begin{array}{lll}
\text { so } \quad A_{v}=0 & \operatorname{fom}(1) & \text { and } a_{0}=v \\
A_{r} \cos (v \pi)+ & B_{r} \sin (v \pi)=0 & \text { form } 2 \\
& B_{r} \sin (v \pi)=0 & B_{v}=0 \\
& \text { or } v=\text { intern }
\end{array}
$$

and $a_{0}+c_{0} \pi=-v$

$$
\Phi(r, \phi)=\underbrace{\sum_{v=i \operatorname{ing}} B_{v} \sin (v \phi) r^{v}}+V-\frac{2 v}{\pi} \phi
$$

Br determined by baundony condition at ∞ $\phi(r, \phi)=V\left(1-\frac{2}{\pi} \phi\right)$ if no move conductors
4. Note: Seperation of Variables in costesion coordinates would not work because the form of Φ is

$$
\Phi=V_{0}\left(1-\frac{2}{\pi} \phi\right)=V_{0}-\frac{2 V_{0}}{\pi} \tan ^{-1} \frac{y}{x}
$$

Now, I might be wrong but I dons think you can express this as $\Phi=X(x) Y(y)$.
The idea behind sep. of Var. is, you guess a solution that con be separated into functions of only one variable

$$
\Phi=X(*) Y(y) \text { or } \Phi=R(\rho) F(\phi) \operatorname{etc}
$$ and work from there.

If you con find a solution that satisfies boundary conditions, then you are quarouterel it is correct by the Uniqumes theorem. If not, then the form you started with does nat work, since $\tan ^{-1} \frac{y}{x}$ is not a product of a function only of x and a function only of y, I donuts think sep of Vo r in contesion coordinates works in this case.
4. Method 2 Green Functions
$G\left(\vec{x}, \vec{x}^{\prime}\right)$ for a place in $3 D$ is

$$
G_{3 D}=\frac{1}{\left[(x-x)^{2}+\left(y-y^{\prime}\right)^{2}+(z-2)^{\prime}\right)^{]^{1 / 2}}}-\frac{1}{\left[\left(x-x^{\prime}\right)^{2}+\left(y+y^{\prime}\right)^{2}+\left(\frac{2}{z-2}\right)^{2}\right]^{1 / 2}}
$$

lets label an axes in the following way:

The conductor is on the $x z$ plane at $y=0$

$$
\begin{array}{rlrl}
\Phi= & +v_{0} & & x>0 \\
-v_{0} & & x<0
\end{array}
$$

we con see that in the final form of Φ everywhere, there con be no dependence on Z because of symmetry, which reflects the 2D nature of the problem. However, we cannot simply ignore the terms in G. we home to integrate them out.

Alternatively we can start with the 2D Greens Function, imagining 2 line changes above and below the plane: recall $\phi_{\text {tine charge }}=\frac{1}{2 \pi r_{0}} \operatorname{lin}^{\frac{L}{2}}$

$$
G_{z_{D}} \simeq \ln \frac{\overrightarrow{F_{+}}}{\overrightarrow{r_{0}}}-\ln \frac{\vec{r}}{r_{0}}
$$

and proceed from there,
Enengone stated from the 3D case, so I will start there too

4
remember $\phi=\underbrace{\frac{1}{4 \pi \varepsilon_{0}} \int_{V=0} \frac{\rho\left(x^{\prime}\right)}{\left|x-x^{\prime}\right|} d^{3}+}_{\text {hone, } n \text { is }(-4)}+\frac{-1}{4 \pi} \oint_{S} \phi\left(x^{\prime}\right) \underbrace{}_{\substack{\text { does nat } \\ \text { contributes }}} \frac{\partial c}{\partial i} d \dot{s}$

$$
\begin{aligned}
\frac{\partial G}{\partial n}=-\left.\frac{\partial G}{\partial y^{\prime}}\right|_{y^{\prime}=0} & =-\left[\frac{y-y \prime}{\left.\left[(x-x)^{2}+(2-2)^{2}+\left(y-y^{\prime}\right)^{3 / 2}\right]^{3}+\frac{y+y^{\prime}}{\left[\left(x-x^{\prime}\right)^{2}+\left(2-2^{\prime}\right)^{2}+(y+y)^{\prime}\right]^{3 / 2}}\right]_{y^{\prime}}=0}\right. \\
& =\frac{-2 y}{\left[\left(x-x^{\prime}\right)^{2}+(2-2)^{2}+y^{2}\right]^{3 / 2}}
\end{aligned}
$$

$$
\Phi=\frac{1}{4 \pi} \int_{-\infty}^{\infty} \phi\left(x^{\prime}\right) d x^{\prime} \int_{-\infty}^{\infty} d z^{\prime} \frac{2 y}{\left[\left(x+x^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}+y^{2}\right]^{3 / 2}}
$$

before we split the x^{\prime} integral, lets calculate the z^{\prime} integral

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{d z^{\prime}}{\left[\left(x-x^{\prime}\right)+\left(z-z^{\prime}\right)^{2}+y^{2}\right]^{3 / 2}=} \frac{2}{\left(x-x^{\prime}\right)^{2}+y^{2}} \\
\Phi(x)= & \frac{2 y}{4 \pi} \cdot 2 \int_{-\infty}^{\infty} \Phi\left(x^{\prime}\right) \frac{d x^{\prime}}{\left(x-x^{\prime}\right)^{2}+y^{2}} \\
= & \frac{y}{\pi} V_{0}\left[\int_{0}^{\infty} \frac{d x^{\prime}}{\left(x-x^{\prime}\right)^{2}+y^{2}}-\int_{-\infty}^{0} \frac{d x^{\prime}}{\left(x-x^{\prime}\right)^{2}+y^{2}}\right] \\
& \int \frac{d x^{\prime}}{\left(x-x^{\prime}\right)^{2}+y^{2}}=-\frac{1}{y} \tan ^{-1} \frac{x-x^{\prime}}{y} \\
== & \frac{V_{0}}{\pi}\left[\tan ^{-1}(-\infty)-\tan ^{-1} \frac{x}{y}-\tan ^{-1} \frac{x}{y}+\tan ^{-1}(\infty)\right] \\
& {\left[-2 \tan ^{-1}\left(\frac{x}{y}\right)+\tan ^{-1}(-\infty)+\tan ^{-1}(\infty)\right] }
\end{aligned}
$$

see last page on details on doing integral
see last pare fa details again

I'm not sure what pronch to evaluate these on...

$$
\tan ^{-1} \infty=\frac{\pi}{2}(2 x+1)
$$

So I will write $\tan ^{-1}(-\infty)+\tan ^{-1}(\infty)=n \pi$ and determine a by bounder conditions

4

$$
\Phi(x)=\frac{V_{0}}{\pi}\left[2 \tan ^{-1}\left(\frac{x}{y}\right)+n \pi\right]
$$

Note: $\operatorname{Arctan} x=\pi-\arctan \frac{1}{x}$

$$
=\frac{v_{0}}{\pi}\left[\pi-2 \tan ^{-1}\left(\frac{y}{x}\right)+n \pi\right]=v_{0}\left(n-\frac{2}{\pi} \tan ^{-1} \frac{y}{x}\right)
$$

to satisty B.C, $\quad n=1$

$$
=V_{0}\left[1-\frac{2}{\pi} \tan ^{-1} \frac{y}{x}\right]
$$

reall $\tan ^{-1} \frac{y}{x}=\phi$
which aquees with own previcus retad:

4

$$
\begin{array}{ll}
\int_{-\infty}^{\infty} \frac{d z^{\prime}}{\left.\left[i x-x^{\prime}\right)^{2}+y^{2}+\left(z-z^{\prime}\right)^{2}\right]^{3 / 2}} \quad \text { Integral } a^{2}=\left(x-x^{\prime}\right)^{2} \\
\frac{1}{a^{3}} \int_{-\infty}^{\infty} d z^{\prime}\left[1+\left(\frac{z-z^{\prime}}{a}\right)^{2}\right]^{-3 / 2} & \tan u=\left(\frac{z-z^{\prime}}{a}\right) \\
-\frac{1}{a^{2}} \int_{-\frac{\pi}{2}}^{-\frac{\pi}{2}}\left[1+\tan ^{2} u\right]^{-3 / 2} \cos ^{-2} u d u & \frac{d u}{\cos u=-\frac{d v^{\prime}}{a}} \\
-\frac{1}{a^{2}} \int_{+\frac{\pi}{2}}^{\pi / 2} \cos u d u=-\left.\frac{1}{a^{2}} \sin u\right|_{+\pi / 2} ^{-\pi / 2}=\frac{2}{a^{2}}=\frac{2}{\left(x-x^{\prime}\right)^{2}+y^{2}}
\end{array}
$$

Second Integral

$$
\begin{aligned}
& \int \frac{d x^{\prime}}{\left(x-x^{\prime}\right)^{2}+y^{2}}=\frac{1}{y^{2}} \int \frac{d x}{\left(1+\left(\frac{x-x^{\prime}}{y}\right)^{2}\right)}
\end{aligned} \begin{aligned}
& \tan u=\frac{x-x^{\prime}}{y} \\
& =-\frac{1}{y} \int \frac{d u}{\cos ^{2} u}=-\frac{d x^{\prime}}{y} \\
& \cos ^{2} u\left(1+\tan ^{2} u\right)=-\frac{1}{y} \int d u=-\frac{1}{y} \tan ^{-1} \frac{x-x^{\prime}}{y}
\end{aligned}
$$

- Closed books and closed notes
- Please write down the necessary intermediate steps
- Write your answers in the space provided. Continue on the back if necessary.
- A formula sheet is provided in the last page of the exam.
\qquad
ID:

Problem 1: \qquad

Problem 2: \qquad

Problem 3: \qquad

Problem 4: \qquad

Problem 5: \qquad

Problem 6: \qquad

Total:

1. A semicircular wire of radius R is centered at the origin, while straight segments extend to infinity along the X -axis, as shown below. A uniform current I is suddenly turned on at $\mathrm{t}=0$, remaining constant thereafter.
(a) Calculate the vector (\vec{A}) and scalar potential (V) as a function of time at the origin. (10 points)
(b) Calculate \vec{E} and \vec{B} as a function of time at the origin (if one of the quantities can not be directly calculated, explain it). (6 points)

see homework
2. Suppose the entire region below the plane $z=0$ is filled with uniform linear dielectric material of susceptibility χ_{e}. A point charge q is placed a distance d above the origin.
a) Find the potential in all space. (8 points)
b) Find the bound charge on the surface of the dielectric. (4 points)
c) Find the force acting on the charge q. (4 points)
for $\quad z>0$ imagine image change q^{\prime} at $z=-d$ for $2<0$ inagisi image chase $\varepsilon^{\prime \prime}$ at $2=d$
a.

$$
\begin{aligned}
\phi_{\text {cot }} & =\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{q}{\left(\rho^{2}-(2-\alpha)^{2}\right.}+\frac{q^{\prime}}{\left(\rho^{2}+(2+\alpha)^{2}\right)^{1 / 2}}\right] \quad \rho^{2}=x^{2}+y^{2} \\
\phi_{i n} & =\frac{1}{4 \pi \varepsilon_{0}} \frac{q^{\prime \prime}}{\left(\rho^{2}+(2-\alpha)^{2}\right)^{1 / 2}} \\
\vec{E}_{i n} & =\frac{q^{\prime \prime}}{4 \pi \varepsilon_{0}}\left[\frac{\rho}{\left(\rho^{2}+(2-\alpha)^{2}\right)^{3 / 2}} \hat{\rho}+\frac{(2-\alpha)}{\left(\rho^{2}+(2-\alpha)^{2}\right)^{3 / 2}} \hat{z}\right] \\
\vec{E}_{\text {out }} & =\frac{q}{4 \pi \varepsilon_{0}}\left[\frac{\rho}{\left(\rho^{2}+(3-\alpha)^{2}\right)^{3 / 2}}+\frac{q^{\prime}}{q} \frac{\rho}{\left(\rho^{2}+(2+\alpha)^{2}\right)^{3 / 2}}\right] \rho^{1} \\
& +\frac{q}{4 \pi \varepsilon_{0}}\left[\frac{(2-\alpha)}{\left(\rho^{2}-(2-\alpha)^{2}\right)^{3 / 2}}+\frac{q^{\prime}}{q} \frac{(2+\alpha)}{\left(\rho^{2}+(2+\alpha)^{2}\right)^{3 / 2}}\right] z^{1}
\end{aligned}
$$

$\left.\begin{array}{rl}\text { Apply B.C at } 2=0 \\ E_{11} \text { cont: } \Rightarrow 1+\frac{q^{\prime}}{q}=\frac{q^{\prime \prime}}{q} \\ D_{+} \text {cat } \Rightarrow 1-\frac{q^{\prime}}{q}=\frac{\varepsilon^{\prime}}{\varepsilon_{0}} q^{\prime \prime}\end{array}\right\}\left\{\begin{array}{l}q^{\prime} / q=\frac{\left(1-\varepsilon / \varepsilon_{0}\right)}{\left(1 T \varepsilon / \varepsilon_{0}\right)}=\frac{x_{e}}{2+x_{e}} \\ q^{\prime \prime} / q=\frac{2}{\left(1 \varepsilon^{\varepsilon} / \delta_{0}\right)}=\frac{2}{2+x_{e}}\end{array}\right.$

$$
\left.\begin{array}{l}
\text { at } z=0 \\
E_{11} \text { cont: } \Rightarrow \quad 1+\frac{q^{\prime}}{q}=\frac{q^{\prime \prime}}{q} q^{\prime \prime} \\
D_{+} \text {cost } \Rightarrow 1-\frac{q^{\prime}}{q}=\frac{\varepsilon_{0}}{\varepsilon_{0}} / q
\end{array}\right\} \begin{aligned}
& q^{\prime} / q=\frac{\left(1-\varepsilon / \varepsilon_{0}\right)}{\left(1 T \varepsilon / \varepsilon_{0}\right)}=\frac{x_{e}}{2+x_{e}} \\
& q^{\prime \prime} / q=\frac{2}{\left(1 \tau / \varepsilon_{0}\right)}=\frac{2}{2+x_{e}}
\end{aligned}
$$

b. From Gauss's Law $E_{\infty \infty}^{2}-E_{i 0}^{2}=\sigma / \varepsilon_{0}$

$$
\begin{aligned}
\sigma & =\frac{8 d}{4 \pi} \frac{1}{\left(\rho^{2}+d^{2}\right)^{3 / 2}}\left[-1+\frac{q^{\prime}}{q}+\frac{q^{\prime \prime}}{q}\right] \\
& =\frac{q^{d}}{2 \pi} \frac{1-8 / \varepsilon_{0}}{1+8 / \varepsilon_{0}} \frac{1}{\left(\rho^{2}+d^{3}\right)^{3 / 2}}=\frac{q^{d}}{2 \pi} \frac{x_{e}}{2+x_{e}} \frac{1}{\left(\rho^{2}+d^{2}\right)^{3 / 2}}
\end{aligned}
$$

$$
\varepsilon / \varepsilon_{0}=1+x_{e}
$$

$$
\text { c. } F=\frac{q q^{\prime}}{4 \pi \varepsilon_{0}(2 d)^{2}}=\frac{q^{2}}{16 \pi \varepsilon_{0} d^{2}} \frac{x_{e}}{2+x_{e}}
$$

3. Consider a thin ring of radius R charged uniformly with a total charge Q. Find the potential at all points in space. [Hint: Write down the potential on the axis and match it to an expansion in Legendre polynomials. Try to do this for all terms in the series, but do it up to P_{2} at least.] (16 points)

$$
\begin{aligned}
& \phi=\frac{\lambda}{4 \pi \varepsilon_{0}} \int \frac{1}{\sqrt{R^{2}+2^{2}}} R d \phi \\
& =\frac{Q}{4 \pi \varepsilon_{0}} \frac{1}{\sqrt{R^{2}+2^{2}}} \text { on } z \text { axis }
\end{aligned}
$$

General Solution $\phi=\sum_{e}\left(A_{e} r^{2}+\frac{B_{e}}{p^{2 r i}}\right) p_{l}(\cos \theta)$

$$
\text { on } 2 \text { axis } \rightarrow=\sum_{R}^{\xi}\left(A_{R} r^{2}+B_{R} / r+1\right)
$$

Expand $\frac{1}{\sqrt{R^{2}+2^{2}}}$ and notch to

$$
\begin{aligned}
\left(1+\varepsilon^{2}\right)^{-1 / 2} & =1+\left(-\frac{1}{2}\right) \varepsilon^{2}+\frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right) \varepsilon^{4}+\frac{1}{2-3}\left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)(-5 / 2) \varepsilon \neq \cdots \\
& =\sum_{j} \frac{(-1)^{j}(2 j-1)!!\varepsilon^{2 j}}{j!2^{j}}
\end{aligned}
$$

so fees $Z<R$

$$
\begin{aligned}
& \quad \phi_{\text {abatis }}=\frac{Q}{4 \pi \varepsilon_{0}} \frac{1}{R} \sum_{j} \frac{(-1)^{j}(2 j-1)!!}{j!2^{j}}\left(\frac{2}{R}\right)^{2 j} .
\end{aligned}
$$

so

$$
\begin{aligned}
& \phi_{\text {enaguat }}=\frac{Q}{4<R}<\frac{1}{R} \sum_{j} \frac{(-1)^{j}(2 j-1)!!}{j!2^{j}}\left(\frac{r}{R}\right)^{2 j} p_{2 j}(\cos \theta)
\end{aligned}
$$

fa $2>R$

$$
\begin{aligned}
& \phi_{\text {ar axis }}=\frac{Q}{4 \pi \varepsilon} \frac{1}{2} \sum_{i} \frac{(-1)^{j}(2 j-1)!!}{j!2^{j}}\left(\frac{R}{2}\right)^{2 j} \\
& \phi_{\text {enaramian }}=\frac{Q}{4 \pi \varepsilon_{0}} \frac{1}{r} \sum_{j} \frac{(-1)^{j}(2 j-1)!!}{j!2^{j}}\left(\frac{R}{r}\right)^{2 j}-P_{2 j}(\cos 0)
\end{aligned}
$$

4. A beam of light is incident normally from air on a plane slab of a transparent dielectric with refractive index n_{2} and thickness h. The light passes through the slab and enters a third medium with refractive index n_{3} and of infinite extent. Find the condition for zero reflection back into the first medium. (16 points)

Apply B.C. E_{11} cont. at $2=0, h$ H_{11} cont. at $2=0,4$
since μ is obant the some exaywhere, this is the same as B_{11} cont.

2.

$$
\begin{aligned}
& E_{x}=E_{A} e^{i \pi_{2} 2}+E_{B} e^{-i \pi_{2} 2} \\
& B_{y}=\frac{N_{2} E_{A}}{c} e^{i \kappa_{2} 2}-\frac{n_{2} E_{B}}{c} e^{-i \kappa_{2} z}
\end{aligned}
$$

3. $E_{x}=E_{T} e^{i R_{3} 2}$

$$
B_{y}=\frac{n_{3}}{4} E_{T} e^{i K_{3} 2}
$$

$$
E_{A} e^{i k_{2} h}+E_{B} e^{-i k_{2} h}=E_{T} e^{i k_{3} h}
$$

$$
E_{A} e^{i k_{2} h}-E_{B} e^{-i k_{2} h}=\frac{n_{2}}{n_{2}} E_{r} e^{i k_{3} h}
$$

Solve $\operatorname{ton} \frac{E_{\text {och }}}{E_{0}}: \quad E_{A}=\frac{E_{T}}{2}\left(1+x_{3} / n_{L}\right) e^{i k_{3} h} e^{-i k_{2} h}$ or lease
Eng in tempos

$$
E_{6}=\frac{E_{T}}{2}\left(1-x_{3} / m_{2}\right) e^{i k_{3} h} e^{i k_{2} h}
$$

of E_{T}

$$
\frac{E_{r_{0}}}{E_{T}}=\frac{e^{i k_{3} h}}{4}\left[\left(1-x_{2}\right)\left(1+x_{3} / m_{2}\right) e^{-i k_{2} h}+\left(1+m_{2}\right)\left(1-x_{3} / m_{2}\right) e^{i k_{2} h}\right]
$$

fo 20 vo reflection

$$
\left(1-n_{2}\right)\left(1+n_{2} / n_{2}\right)+\left(1+n_{2}\right)\left(1-n_{3} / n_{2}\right) e^{20 k_{2} h}=0
$$

$$
\begin{array}{r}
\left|\frac{E_{\text {oof }}}{E_{p}}\right|=0 \quad \text { I mag ines } \\
\text { Real pout: }
\end{array}
$$

$$
\begin{aligned}
2 k_{2} h & \triangleq m \pi \\
k_{2} & =\frac{m \pi}{2 h}
\end{aligned} \Rightarrow \begin{aligned}
h & =\frac{m}{4} \lambda_{2} \\
& =\frac{2 m \lambda_{2}}{4 x_{2}}
\end{aligned}
$$

Mennen:

$$
2\left(1-n_{2}\right)=0 \quad \Rightarrow \quad n_{3}=1
$$

Mod $2\left(n_{2}^{2}-n_{3}\right)=0 \quad \Rightarrow \quad n_{2}=\sqrt{n_{3}}$
5. The linear charge density on a ring of radius a is given by $\rho=\frac{q}{a}(\cos \varphi-\sin \varphi)$. Find the monopole, dipole, and quadrupole moments of the system, and use these moments to write an expression for the potential at an arbitrary point in space. (16 points)

$$
Q_{22}=\int\left(32^{2}-a^{2}\right)^{2} / a(-\sin \phi+\cos \phi)=0 \quad \text { some with } Q_{2} y, O_{2 x}
$$

constant Ane oscillation

$$
\begin{aligned}
& Q_{x x}=\int\left(3 x^{2}-a^{2}\right) \frac{2}{a}(\cos \phi-\sin \phi) a d \phi=2 a^{2} \int\left(3 \cos ^{2} \phi-1\right)(\cos \phi-\sin \phi) d \phi \\
& 3 \int \cos ^{2} \phi(\cos \phi-\sin \theta)-\int(\cos \phi-\sin \phi) \\
& \text { in } \\
& \text { posiodtity pasidicity } \quad=0
\end{aligned}
$$

some with aery

So $q_{i j}=0$

So $\phi(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}} \frac{\vec{p} \cdot \hat{r}}{r^{2}}=\frac{q a \pi}{4 \pi \varepsilon_{0}}(\sin \theta \cos \phi+\sin \theta \sin \phi)$

$$
\begin{aligned}
& Q_{x y}=\int(3 x y>\frac{\theta}{a}(\cos \varphi-\sin \varphi) a d \varphi=q a^{2} \int(3 \underbrace{\sin \theta}_{\frac{1}{\sin \phi} \varphi \cos \theta})(\cos \varphi-\sin \theta) d \theta \\
& \frac{1}{2} \sin 2 \phi=0 \text { for san moses as } a_{x x}
\end{aligned}
$$

$$
\begin{aligned}
& Q_{\text {at }}=\frac{2}{a} \int(\cos \phi-\sin \phi) a d \phi=2\left[\int_{0}^{2 \pi} \cos \phi d \phi+\int_{0}^{2 \pi} \sin \phi d \phi\right]=0 \\
& \vec{p}=\frac{q}{a} \int\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right](\cos \phi-\sin \phi) a d \phi=q\left[\left[\begin{array}{c}
a \cos \phi \\
a \sin \phi \\
0
\end{array}\right](\cos \phi-\sin \phi) d \phi\right. \\
& \int \cos ^{2} \phi=\int \sin ^{2} \theta=\pi \\
& \int \sin \phi \cos \varphi=0 \\
& \vec{p}=q a \pi\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right] \\
& Q_{i j}=\int\left(3 x_{i} x_{j}-r^{2} \delta_{i j}\right) \rho(\dot{x}) d V
\end{aligned}
$$

6. (a) X-rays which strike a metal surface at an angle of incidence to the normal greater than a critical angle are totally reflected. Assuming that the metal contains n free electrons per unit volume, calculate θ_{c} as a function of the angular frequency ω of X-rays, m_{e}, e, n and ε_{0}. (10 points)
(b) If ω and θ are such that total reflection does not occur, calculate what fraction of the incident wave is reflected. Assuming that the polarization vector of the X -rays is perpendicular to the plane of incidence and $\mu \approx \mu_{0}$. (10 points)
a. In gavial $\varepsilon_{r}=\frac{\varepsilon}{\varepsilon_{0}}=1+\frac{N e^{2}}{m \varepsilon_{0}} \sum_{j} \frac{f j}{\omega_{j} \cdot-\omega^{2}-i j_{j} j}$
ω_{j} is the $j^{\text {th }}$ binding frogung of each molecule
N is robeabe/volume
f_{j} is of electrons/molicule bound at frouncy wis
in metals, we howe free electrons in addition
to some bound ones. Fo the free ones $\omega_{0}=0$, pull it out of the sum.
if there ore no bound electrons,

$$
\varepsilon_{r}=1+\frac{N e^{2} f_{0}}{m \varepsilon_{0}\left(-\omega^{2}-i j 0 \omega\right)}=1+\frac{n e^{2}}{m \varepsilon_{0}} \frac{1}{\left(-\omega^{2}-i \gamma_{0} \omega\right)}
$$

where $n=N P_{0}$
is the somber
of free ebetrous per volvas.
and for high frequency (x-rags) w>>ro

$$
\varepsilon_{r}=1-\frac{\omega_{p}^{2}}{\omega^{2}} \quad \text { where } \omega_{p}^{2}=\frac{n e^{2}}{n \varepsilon_{0}} \quad \text { is the plasma fogurey }
$$

$\omega_{p} \sim 10^{15} \mathrm{~Hz}$ Notice this is positive and loss than 1 for high ultraviobl. Aequency, so we con get total reflection

b. For polarization paspardicules to the plow of inciduce, $\frac{E_{\text {ref }}}{E_{i s c}}=\frac{\sin \left(\theta^{i}-\theta\right)}{\sin \left(\theta^{i}+\theta\right)}$
swells lew: "in $^{\prime \prime} \sin \theta=x^{\prime} \sin \theta^{\prime} \quad \quad \sin \theta^{\prime}=\frac{1}{4} \sin \theta$

$$
\begin{aligned}
\sin \theta^{\prime}=\frac{1}{8^{\prime}} \sin \theta \\
\left.\cos ^{\prime} \theta^{\prime}=\sqrt{1-\frac{\sin ^{2} \theta}{s^{\prime 2}}} \Rightarrow \begin{array}{rl}
\sin \left(\theta^{\prime} \pm \theta\right) & =\sin \theta^{\prime} \cos \theta \pm \cos \theta^{\prime} \sin \theta \\
& =\frac{\sin }{\sin ^{0}}\left(\cos \theta \pm \sqrt{\pi^{\prime}{ }^{2}-\sin ^{2} \theta}\right)
\end{array}\right)
\end{aligned}
$$

so the Poucen fraction reflected is

$$
\left|\frac{E_{m \rho}}{E_{g}}\right|^{2}=\left|\frac{\cos \theta-\sqrt{1-\frac{\omega_{p}^{2}}{\omega^{2}}-\sin ^{2} \theta}}{\cos \theta+\sqrt{1-\frac{\omega_{p}^{2}}{\omega}-\sin ^{2} \theta}}\right|^{2} 7
$$

- Closed books and closed notes
- Please write down the necessary intermediate steps
- Write your answers in the space provided. Continue on the back if necessary.
- A formula sheet is provided in the last page of the exam.
\qquad
ID:

Problem 1: \qquad

Problem 2: \qquad

Problem 3: \qquad

Problem 4: \qquad

Problem 5: \qquad

Problem 6: \qquad

Total:

1. A semicircular wire of radius R is centered at the origin, while straight segments extend to infinity along the X -axis, as shown below. A uniform current I is suddenly turned on at $\mathrm{t}=0$, remaining constant thereafter.
(a) Calculate the vector (\vec{A}) and scalar potential (V) as a function of time at the origin. (10 points)
(b) Calculate \vec{E} and \vec{B} as a function of time at the origin (if one of the quantities can not be directly calculated, explain it). (6 points)

see homework
2. Suppose the entire region below the plane $z=0$ is filled with uniform linear dielectric material of susceptibility χ_{e}. A point charge q is placed a distance d above the origin.
a) Find the potential in all space. (8 points)
b) Find the bound charge on the surface of the dielectric. (4 points)
c) Find the force acting on the charge q. (4 points)
for $\quad z>0$ imagine image change q^{\prime} at $z=-d$ for $2<0$ inagisi image chase $\varepsilon^{\prime \prime}$ at $2=d$
a.

$$
\begin{aligned}
\phi_{\text {cot }} & =\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{q}{\left(\rho^{2}-(2-\alpha)^{2}\right.}+\frac{q^{\prime}}{\left(\rho^{2}+(2+\alpha)^{2}\right)^{1 / 2}}\right] \quad \rho^{2}=x^{2}+y^{2} \\
\phi_{i n} & =\frac{1}{4 \pi \varepsilon_{0}} \frac{q^{\prime \prime}}{\left(\rho^{2}+(2-\alpha)^{2}\right)^{1 / 2}} \\
\vec{E}_{i n} & =\frac{q^{\prime \prime}}{4 \pi \varepsilon_{0}}\left[\frac{\rho}{\left(\rho^{2}+(2-\alpha)^{2}\right)^{3 / 2}} \hat{\rho}+\frac{(2-\alpha)}{\left(\rho^{2}+(2-\alpha)^{2}\right)^{3 / 2}} \hat{z}\right] \\
\vec{E}_{\text {out }} & =\frac{q}{4 \pi \varepsilon_{0}}\left[\frac{\rho}{\left(\rho^{2}+(3-\alpha)^{2}\right)^{3 / 2}}+\frac{q^{\prime}}{q} \frac{\rho}{\left(\rho^{2}+(2+\alpha)^{2}\right)^{3 / 2}}\right] \rho^{1} \\
& +\frac{q}{4 \pi \varepsilon_{0}}\left[\frac{(2-\alpha)}{\left(\rho^{2}-(2-\alpha)^{2}\right)^{3 / 2}}+\frac{q^{\prime}}{q} \frac{(2+\alpha)}{\left(\rho^{2}+(2+\alpha)^{2}\right)^{3 / 2}}\right] z^{1}
\end{aligned}
$$

$\left.\begin{array}{rl}\text { Apply B.C at } 2=0 \\ E_{11} \text { cont: } \Rightarrow 1+\frac{q^{\prime}}{q}=\frac{q^{\prime \prime}}{q} \\ D_{+} \text {cat } \Rightarrow 1-\frac{q^{\prime}}{q}=\frac{\varepsilon^{\prime}}{\varepsilon_{0}} q^{\prime \prime}\end{array}\right\}\left\{\begin{array}{l}q^{\prime} / q=\frac{\left(1-\varepsilon / \varepsilon_{0}\right)}{\left(1 T \varepsilon / \varepsilon_{0}\right)}=\frac{x_{e}}{2+x_{e}} \\ q^{\prime \prime} / q=\frac{2}{\left(1 \varepsilon^{\varepsilon} / \delta_{0}\right)}=\frac{2}{2+x_{e}}\end{array}\right.$

$$
\left.\begin{array}{l}
\text { at } z=0 \\
E_{11} \text { cont: } \Rightarrow \quad 1+\frac{q^{\prime}}{q}=\frac{q^{\prime \prime}}{q} q^{\prime \prime} \\
D_{+} \text {cost } \Rightarrow 1-\frac{q^{\prime}}{q}=\frac{\varepsilon_{0}}{\varepsilon_{0}} / q
\end{array}\right\} \begin{aligned}
& q^{\prime} / q=\frac{\left(1-\varepsilon / \varepsilon_{0}\right)}{\left(1 T \varepsilon / \varepsilon_{0}\right)}=\frac{x_{e}}{2+x_{e}} \\
& q^{\prime \prime} / q=\frac{2}{\left(1 \tau / \varepsilon_{0}\right)}=\frac{2}{2+x_{e}}
\end{aligned}
$$

b. From Gauss's Law $E_{\infty \infty}^{2}-E_{i 0}^{2}=\sigma / \varepsilon_{0}$

$$
\begin{aligned}
\sigma & =\frac{8 d}{4 \pi} \frac{1}{\left(\rho^{2}+d^{2}\right)^{3 / 2}}\left[-1+\frac{q^{\prime}}{q}+\frac{q^{\prime \prime}}{q}\right] \\
& =\frac{q^{d}}{2 \pi} \frac{1-8 / \varepsilon_{0}}{1+8 / \varepsilon_{0}} \frac{1}{\left(\rho^{2}+d^{3}\right)^{3 / 2}}=\frac{q^{d}}{2 \pi} \frac{x_{e}}{2+x_{e}} \frac{1}{\left(\rho^{2}+d^{2}\right)^{3 / 2}}
\end{aligned}
$$

$$
\varepsilon / \varepsilon_{0}=1+x_{e}
$$

$$
\text { c. } F=\frac{q q^{\prime}}{4 \pi \varepsilon_{0}(2 d)^{2}}=\frac{q^{2}}{16 \pi \varepsilon_{0} d^{2}} \frac{x_{e}}{2+x_{e}}
$$

3. Consider a thin ring of radius R charged uniformly with a total charge Q. Find the potential at all points in space. [Hint: Write down the potential on the axis and match it to an expansion in Legendre polynomials. Try to do this for all terms in the series, but do it up to P_{2} at least.] (16 points)

$$
\begin{aligned}
& \phi=\frac{\lambda}{4 \pi \varepsilon_{0}} \int \frac{1}{\sqrt{R^{2}+2^{2}}} R d \phi \\
& =\frac{Q}{4 \pi \varepsilon_{0}} \frac{1}{\sqrt{R^{2}+2^{2}}} \text { on } z \text { axis }
\end{aligned}
$$

General Solution $\phi=\sum_{e}\left(A_{e} r^{2}+\frac{B_{e}}{p^{2 r i}}\right) p_{l}(\cos \theta)$

$$
\text { on } 2 \text { axis } \rightarrow=\sum_{R}^{\xi}\left(A_{R} r^{2}+B_{R} / r+1\right)
$$

Expand $\frac{1}{\sqrt{R^{2}+2^{2}}}$ and notch to

$$
\begin{aligned}
\left(1+\varepsilon^{2}\right)^{-1 / 2} & =1+\left(-\frac{1}{2}\right) \varepsilon^{2}+\frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right) \varepsilon^{4}+\frac{1}{2-3}\left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)(-5 / 2) \varepsilon \neq \cdots \\
& =\sum_{j} \frac{(-1)^{j}(2 j-1)!!\varepsilon^{2 j}}{j!2^{j}}
\end{aligned}
$$

so fees $Z<R$

$$
\begin{aligned}
& \quad \phi_{\text {abatis }}=\frac{Q}{4 \pi \varepsilon_{0}} \frac{1}{R} \sum_{j} \frac{(-1)^{j}(2 j-1)!!}{j!2^{j}}\left(\frac{2}{R}\right)^{2 j} .
\end{aligned}
$$

so

$$
\begin{aligned}
& \phi_{\text {enaguat }}=\frac{Q}{4<R}<\frac{1}{R} \sum_{j} \frac{(-1)^{j}(2 j-1)!!}{j!2^{j}}\left(\frac{r}{R}\right)^{2 j} p_{2 j}(\cos \theta)
\end{aligned}
$$

fa $2>R$

$$
\begin{aligned}
& \phi_{\text {ar axis }}=\frac{Q}{4 \pi \varepsilon} \frac{1}{2} \sum_{i} \frac{(-1)^{j}(2 j-1)!!}{j!2^{j}}\left(\frac{R}{2}\right)^{2 j} \\
& \phi_{\text {enaramian }}=\frac{Q}{4 \pi \varepsilon_{0}} \frac{1}{r} \sum_{j} \frac{(-1)^{j}(2 j-1)!!}{j!2^{j}}\left(\frac{R}{r}\right)^{2 j}-P_{2 j}(\cos 0)
\end{aligned}
$$

4. A beam of light is incident normally from air on a plane slab of a transparent dielectric with refractive index n_{2} and thickness h. The light passes through the slab and enters a third medium with refractive index n_{3} and of infinite extent. Find the condition for zero reflection back into the first medium. (16 points)

Apply B.C. E_{11} cont. at $2=0, h$ H_{11} cont. at $2=0,4$
since μ is obant the some exaywhere, this is the same as B_{11} cont.

2.

$$
\begin{aligned}
& E_{x}=E_{A} e^{i \pi_{2} 2}+E_{B} e^{-i \pi_{2} 2} \\
& B_{y}=\frac{N_{2} E_{A}}{c} e^{i \kappa_{2} 2}-\frac{n_{2} E_{B}}{c} e^{-i \kappa_{2} z}
\end{aligned}
$$

3. $E_{x}=E_{T} e^{i R_{3} 2}$

$$
B_{y}=\frac{n_{3}}{4} E_{T} e^{i K_{3} 2}
$$

$$
E_{A} e^{i k_{2} h}+E_{B} e^{-i k_{2} h}=E_{T} e^{i k_{3} h}
$$

$$
E_{A} e^{i k_{2} h}-E_{B} e^{-i k_{2} h}=\frac{n_{2}}{n_{2}} E_{r} e^{i k_{3} h}
$$

Solve $\operatorname{ton} \frac{E_{\text {och }}}{E_{0}}: \quad E_{A}=\frac{E_{T}}{2}\left(1+x_{3} / n_{L}\right) e^{i k_{3} h} e^{-i k_{2} h}$ or lease
Eng in tempos

$$
E_{6}=\frac{E_{T}}{2}\left(1-x_{3} / m_{2}\right) e^{i k_{3} h} e^{i k_{2} h}
$$

of E_{T}

$$
\frac{E_{r_{0}}}{E_{T}}=\frac{e^{i k_{3} h}}{4}\left[\left(1-x_{2}\right)\left(1+x_{3} / m_{2}\right) e^{-i k_{2} h}+\left(1+m_{2}\right)\left(1-x_{3} / m_{2}\right) e^{i k_{2} h}\right]
$$

fo 20 vo reflection

$$
\left(1-n_{2}\right)\left(1+n_{2} / n_{2}\right)+\left(1+n_{2}\right)\left(1-n_{3} / n_{2}\right) e^{20 k_{2} h}=0
$$

$$
\begin{array}{r}
\left|\frac{E_{\text {oof }}}{E_{p}}\right|=0 \quad \text { I mag ines } \\
\text { Real pout: }
\end{array}
$$

$$
\begin{aligned}
2 k_{2} h & \triangleq m \pi \\
k_{2} & =\frac{m \pi}{2 h}
\end{aligned} \Rightarrow \begin{aligned}
h & =\frac{m}{4} \lambda_{2} \\
& =\frac{2 m \lambda_{2}}{4 x_{2}}
\end{aligned}
$$

Mennen:

$$
2\left(1-n_{2}\right)=0 \quad \Rightarrow \quad n_{3}=1
$$

Mod $2\left(n_{2}^{2}-n_{3}\right)=0 \quad \Rightarrow \quad n_{2}=\sqrt{n_{3}}$
5. The linear charge density on a ring of radius a is given by $\rho=\frac{q}{a}(\cos \varphi-\sin \varphi)$. Find the monopole, dipole, and quadrupole moments of the system, and use these moments to write an expression for the potential at an arbitrary point in space. (16 points)

$$
Q_{22}=\int\left(32^{2}-a^{2}\right)^{2} / a(-\sin \phi+\cos \phi)=0 \quad \text { some with } Q_{2} y, O_{2 x}
$$

constant Ane oscillation

$$
\begin{aligned}
& Q_{x x}=\int\left(3 x^{2}-a^{2}\right) \frac{2}{a}(\cos \phi-\sin \phi) a d \phi=2 a^{2} \int\left(3 \cos ^{2} \phi-1\right)(\cos \phi-\sin \phi) d \phi \\
& 3 \int \cos ^{2} \phi(\cos \phi-\sin \theta)-\int(\cos \phi-\sin \phi) \\
& \text { in } \\
& \text { posiodtity pasidicity } \quad=0
\end{aligned}
$$

some with aery

So $q_{i j}=0$

So $\phi(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}} \frac{\vec{p} \cdot \hat{r}}{r^{2}}=\frac{q a \pi}{4 \pi \varepsilon_{0}}(\sin \theta \cos \phi+\sin \theta \sin \phi)$

$$
\begin{aligned}
& Q_{x y}=\int(3 x y>\frac{\theta}{a}(\cos \varphi-\sin \varphi) a d \varphi=q a^{2} \int(3 \underbrace{\sin \theta}_{\frac{1}{\sin \phi} \varphi \cos \theta})(\cos \varphi-\sin \theta) d \theta \\
& \frac{1}{2} \sin 2 \phi=0 \text { for san moses as } a_{x x}
\end{aligned}
$$

$$
\begin{aligned}
& Q_{\text {at }}=\frac{2}{a} \int(\cos \phi-\sin \phi) a d \phi=2\left[\int_{0}^{2 \pi} \cos \phi d \phi+\int_{0}^{2 \pi} \sin \phi d \phi\right]=0 \\
& \vec{p}=\frac{q}{a} \int\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right](\cos \phi-\sin \phi) a d \phi=q\left[\left[\begin{array}{c}
a \cos \phi \\
a \sin \phi \\
0
\end{array}\right](\cos \phi-\sin \phi) d \phi\right. \\
& \int \cos ^{2} \phi=\int \sin ^{2} \theta=\pi \\
& \int \sin \phi \cos \varphi=0 \\
& \vec{p}=q a \pi\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right] \\
& Q_{i j}=\int\left(3 x_{i} x_{j}-r^{2} \delta_{i j}\right) \rho(\dot{x}) d V
\end{aligned}
$$

6. (a) X-rays which strike a metal surface at an angle of incidence to the normal greater than a critical angle are totally reflected. Assuming that the metal contains n free electrons per unit volume, calculate θ_{c} as a function of the angular frequency ω of X-rays, m_{e}, e, n and ε_{0}. (10 points)
(b) If ω and θ are such that total reflection does not occur, calculate what fraction of the incident wave is reflected. Assuming that the polarization vector of the X -rays is perpendicular to the plane of incidence and $\mu \approx \mu_{0}$. (10 points)
a. In gavial $\varepsilon_{r}=\frac{\varepsilon}{\varepsilon_{0}}=1+\frac{N e^{2}}{m \varepsilon_{0}} \sum_{j} \frac{f j}{\omega_{j} \cdot-\omega^{2}-i j_{j} j}$
ω_{j} is the $j^{\text {th }}$ binding frogung of each molecule
N is robeabe/volume
f_{j} is of electrons/molicule bound at frouncy wis
in metals, we howe free electrons in addition
to some bound ones. Fo the free ones $\omega_{0}=0$, pull it out of the sum.
if there ore no bound electrons,

$$
\varepsilon_{r}=1+\frac{N e^{2} f_{0}}{m \varepsilon_{0}\left(-\omega^{2}-i j 0 \omega\right)}=1+\frac{n e^{2}}{m \varepsilon_{0}} \frac{1}{\left(-\omega^{2}-i \gamma_{0} \omega\right)}
$$

where $n=N P_{0}$
is the somber
of free ebetrous per volvas.
and for high frequency (x-rags) w>>ro

$$
\varepsilon_{r}=1-\frac{\omega_{p}^{2}}{\omega^{2}} \quad \text { where } \omega_{p}^{2}=\frac{n e^{2}}{n \varepsilon_{0}} \quad \text { is the plasma fogurey }
$$

$\omega_{p} \sim 10^{15} \mathrm{~Hz}$ Notice this is positive and loss than 1 for high ultraviobl. Aequency, so we con get total reflection

b. For polarization paspardicules to the plow of inciduce, $\frac{E_{\text {ref }}}{E_{i s c}}=\frac{\sin \left(\theta^{i}-\theta\right)}{\sin \left(\theta^{i}+\theta\right)}$
swells lew: "in $^{\prime \prime} \sin \theta=x^{\prime} \sin \theta^{\prime} \quad \quad \sin \theta^{\prime}=\frac{1}{4} \sin \theta$

$$
\begin{aligned}
\sin \theta^{\prime}=\frac{1}{8^{\prime}} \sin \theta \\
\left.\cos ^{\prime} \theta^{\prime}=\sqrt{1-\frac{\sin ^{2} \theta}{s^{\prime 2}}} \Rightarrow \begin{array}{rl}
\sin \left(\theta^{\prime} \pm \theta\right) & =\sin \theta^{\prime} \cos \theta \pm \cos \theta^{\prime} \sin \theta \\
& =\frac{\sin }{\sin ^{0}}\left(\cos \theta \pm \sqrt{\pi^{\prime}{ }^{2}-\sin ^{2} \theta}\right)
\end{array}\right)
\end{aligned}
$$

so the Poucen fraction reflected is

$$
\left|\frac{E_{m \rho}}{E_{g}}\right|^{2}=\left|\frac{\cos \theta-\sqrt{1-\frac{\omega_{p}^{2}}{\omega^{2}}-\sin ^{2} \theta}}{\cos \theta+\sqrt{1-\frac{\omega_{p}^{2}}{\omega}-\sin ^{2} \theta}}\right|^{2} 7
$$

PHYSICS 210A, Fall 2010

Midterm Exam (100 points in total)

- Closed books and closed notes
- Please write down the necessary intermediate steps
- Write your answers in the space provided. Continue on the back if necessary.
- A formula sheet is provided at the end of the exam.

Name:
ID: \qquad .

Problem 1: \qquad

Problem 2: \qquad

Problem 3: \qquad

Problem 4: \qquad

Total:

1. Two concentric conducting spheres of inner and outer radii a and b, respectively, carry charges $\pm Q$. The empty space between the spheres is half-filled by a hemispherical shell of dielectric (of dielectric constant $\varepsilon / \varepsilon_{0}$) as shown in the figure.
(a) Find the electric field everywhere between the spheres. (12 points)
(b) Calculate the surface-charge distribution on the inner sphere (free charge only). (7 +points)
(c) Calculate the bound (or polarization) charge density induced on the surface of the dielectric at $r=a$. (6 points)

2. An infinitely long cylinder of radius a and surface charge density $\sigma=\sigma_{0} \cos 3 \varphi$ is surrounded by an infinitely long conducting cylindrical tube of inner radius b which is held at zero potential.

(a) Find the potential $\Phi(r, \varphi)$ in the $0 \leq r<a$ and the $a<r \leq b$ regions. (20)
(b) Find the surface charge density on the inner surface of the grounded cylindrical tube. (10 points)
3. A sphere of radius R_{1} has a charge density ρ uniform within its volume, except for a small spherical hollow region of radius R_{2} located a distance a from the center. Find the electric field everywhere in the hollow sphere. (15)
4. An electric dipole of moment \vec{p} is placed at a distance d from a grounded conducting sphere of radius a. The dipole is oriented in the direction radially away from the sphere. Assume that $d \gg a$. Find the electrostatic potential outside the sphere. (30 points)

Midterm Solutions

1. For fall solution see Homework.

Briefly,

$$
\begin{aligned}
& \nabla \cdot E=s / \varepsilon_{0}=\frac{1}{\varepsilon_{0}}\left(\rho_{f}+\rho_{b}\right) \quad \rho_{b}=-\nabla \cdot p \\
& \nabla \cdot(\underbrace{\varepsilon_{0} E+p}_{D})=\rho_{f} \quad \nabla \cdot D=\rho_{f}
\end{aligned}
$$

Gauss's Law

$$
\begin{aligned}
\frac{4 \pi r^{2}}{2} \cdot D & =\frac{4 \pi a^{2}}{2} \sigma_{2} \\
\Rightarrow D_{1} & =\frac{a^{2}}{r^{2}} \sigma_{1}=\varepsilon_{0} E \\
D_{2} & =\frac{a^{2}}{r^{2}} \sigma_{2}=\varepsilon E
\end{aligned}
$$

$$
\begin{aligned}
& E_{11} \text { is contimuaus } \Rightarrow \\
& \text { (rodibl) }
\end{aligned}
$$

on hemisphere

$$
Q_{2}^{\prime}=-Q_{2} \Rightarrow \frac{4 \pi}{2}\left(a^{2} \sigma_{2}\right)=-\frac{4 \pi}{2} b^{2} \sigma_{2}^{\prime}
$$

$$
\sigma_{2}^{\prime}=-\frac{a^{2}}{b^{2}} \sigma_{2}
$$

$$
\sigma_{1}^{\prime}=-\frac{a^{2}}{b^{2}} \sigma_{1}
$$

entrancing a total of Q on each sphere,

$$
\begin{aligned}
& \frac{4 \pi a^{2}}{2}\left(\sigma_{1}+\sigma_{2}\right)=Q \quad \begin{array}{l}
\sigma_{1}+\sigma_{2}=\frac{a}{2 \pi a^{2}} \\
P_{t} b
\end{array} \rightarrow \frac{Q}{\sigma_{1}=\frac{Q}{2 \pi a^{2}} \frac{1}{1+\varepsilon / \varepsilon_{0}} \quad \sigma_{2}=\frac{Q}{2 \pi a^{2}} \frac{\varepsilon / \varepsilon_{0}}{1+\varepsilon / \varepsilon_{0}}}
\end{aligned}
$$

Pta: $\quad \vec{E}_{1}=\vec{E}_{2}=\frac{a^{2}}{r^{2}} \frac{\sigma_{1}}{\varepsilon_{0}}=\frac{Q}{2 \pi \varepsilon_{0}} \frac{1}{1 \pi^{\varepsilon} / \varepsilon_{0}} \frac{1}{r^{2}}$
C. the bound charge shields, the free charge to make pat of
the E field constant.

$$
\sigma_{b}+\sigma_{2}=\sigma_{1} \Rightarrow \sigma_{b}=\sigma_{1}-\sigma_{2}=\frac{Q}{2 \pi a^{2}} \frac{1-\varepsilon / \varepsilon_{0}}{1+\varepsilon / \varepsilon_{0}}
$$

2.

a. Use separation of variables in polar coordinates.
$r<a \quad \phi_{i n}=a_{0}+\sum_{n=1}^{\infty} r^{n}\left(A_{n} \sin n \phi+B_{n} \cos n \phi\right)$
b) $r>a \quad \phi_{0 x}=d_{0}+b_{0} \sin r+\sum_{n=1}^{\infty}\left[G_{n} r^{n}+H_{n} / r^{n}\right]\left[D_{n} \sin n \phi+F_{n} \cos n \phi\right]$

From the form of σ, we can guess only $n=3$ will survive but I will leave everything for now.
Apply Baundory Conditions:

- At $r=b \quad \phi=0$, there con be no ϕ dependuce

$$
0=d_{0}+b_{0} \sin b+\sum_{n}\left[G_{n} b^{n}+H_{n} / b^{n}\right]\left[D_{n} \sin n \phi+E_{n} \cos n \phi\right]
$$

So $d_{0}=-b_{0} h_{a} b$ and $H_{n}=-G_{n} b^{2 n} \rightarrow$ absonbe G_{n} into D_{n}, F_{n}
notice, saying $D_{n}=F_{n}=0$ would be wrong in this case. Although it does satisfy $q=0$ at $r=b$, we will loose the ϕ dependence at $r \neq b$, and would nat be able to match ϕ at $r=a$.
Apply

$$
\begin{aligned}
& -\frac{\partial \phi_{i n}}{\partial r}-\frac{\partial \varphi_{\text {out }}}{\partial r}=+\frac{\sigma_{f}}{\varepsilon_{0}} \\
& \frac{\partial \phi_{i n}}{\partial r}=\sum_{n} n r^{n-1}\left(A_{n} \sin n \phi+B_{n} \cos n \phi\right) \\
& \frac{\partial \phi_{o}}{\partial r}=\frac{b_{0}}{r}+\sum_{n} n r^{n-1}\left[1-\frac{b^{2 n}}{r^{2 n}}\right]\left[D_{n} \sin n \phi+F_{n} \cos n q\right] \\
& \Rightarrow \quad+\frac{\sigma_{0}}{\varepsilon_{0}} \cos 3 \phi=-\frac{b_{0}}{a}+\sum_{n} n a^{n-1}\left[\left(A_{n}-\left(1+\left(\frac{b}{a}\right)^{2 n}\right) D_{n}\right) \sin n \phi+\left(B_{n}-{ }^{-n}\left(1+\left(\frac{b}{a}\right)^{2 n}\right)\right) \cos n \phi\right]
\end{aligned}
$$

so $\quad b_{0}=0, n=3, \quad\left(A_{n}-1+\left(\frac{b}{a}\right)^{2 n} D_{n}\right)=0, B_{n}-F_{n}\left(1+\left(\frac{b}{a}\right)^{2 n}\right)=+\frac{\sigma_{0}}{\varepsilon_{0} a^{2}}$

$$
\begin{aligned}
& \phi_{\text {in }}=a_{0}+r^{3}\left[D_{3}\left(1+\left(\frac{b}{a}\right)^{6}\right) \sin 3 \phi+\left(F_{n}\left(1+\left(\frac{b}{a}\right)^{6}\right)+\frac{\sigma_{0}}{3 \varepsilon_{0} a^{2}}\right) \cos 3 \phi\right] \\
& \phi_{\text {aut }}=r^{3}\left(D_{3} \sin 3 \phi+F_{3} \cos 3 \phi\right)\left(1-\frac{b^{6}}{r^{6}}\right)
\end{aligned}
$$

Apply $\varphi_{\text {in }}=\phi_{\text {aut }}$ at $r=a$

$$
\begin{gathered}
a_{0}+a^{3} D_{3}\left(1+\left(\frac{b}{a}\right)^{6}\right) \sin 3 \phi+a^{3}\left[F_{3}\left(1+\left(\frac{k}{a}\right)^{6}\right)+\frac{\sigma_{0}}{3 \varepsilon_{0} a^{2}}\right] \cos 3 \phi=a^{3}\left(1-\left(\frac{b}{a}\right)^{6}\right)\left(D_{3} \sin 3 \phi+F_{3} \cos 3 \phi\right) \\
a_{0}=0
\end{gathered}
$$

$a^{3} D_{3}\left(1+\left(\frac{k}{a}\right)^{6}\right) \sin 3 \phi$ con reves egual $a^{3} D_{3}\left(1-\left(\frac{b}{a}\right)^{6}\right) \sin 3 a$ so $D_{3}=0$

$$
\Rightarrow \quad\left(1-\left(\frac{b}{a}\right)^{6}\right) F_{3}=F_{3}\left(1+\left(\frac{b}{a}\right)^{6}\right)+\frac{\sigma}{3 \varepsilon_{0} a^{2}} \quad \Rightarrow \quad F_{3}=\frac{-\sigma_{0}}{6 \varepsilon_{0} a^{2}} \frac{1}{(b / a)^{6}}
$$

Finally,

$$
\begin{aligned}
& \phi_{\text {in }}=+\frac{\sigma_{0}}{6 \varepsilon_{0}}\left(1-\left(\frac{a}{b}\right)^{6}\right) \frac{r^{3}}{a^{2}} \cos 3 \phi \\
& \phi_{\text {aut }}=+\frac{\sigma_{0}}{6 \varepsilon_{0}}\left(1-\frac{r^{6}}{b^{6}}\right) \frac{a^{4}}{r^{3}} \cos 3 \phi
\end{aligned}
$$

b.

$$
\begin{aligned}
\frac{\sigma_{f}}{\varepsilon_{0}}=\left.\frac{\partial \phi_{a u t}}{\partial r}\right|_{r=b} & =\left.\frac{\sigma_{0}}{6 \varepsilon_{0}} \frac{a^{4}}{b^{6}} \cos 3 \phi\left(3 r^{2}+3 b^{6} / r^{4}\right)\right|_{r=b} \\
\sigma_{f} & =-\sigma_{0} \frac{a^{4}}{b^{4}} \cos 3 \phi
\end{aligned}
$$

3. Use Superposition

from Graces Law

$$
4 \pi r^{2} E=\frac{\rho}{\varepsilon_{0}} \frac{4}{3} \pi r^{3} \Rightarrow E=\frac{\rho}{3 \varepsilon_{0}} r \quad \begin{gathered}
\text { radially from } \\
\text { center of spier }
\end{gathered}
$$

$$
\begin{gathered}
\vec{E}_{\rho}=\frac{\rho}{3 \varepsilon_{0}} \vec{r} \\
\vec{E}_{-\rho}=\frac{-\rho}{3 \varepsilon_{0}} \vec{r}^{\prime} \\
\vec{E}_{\text {TOT }}=\vec{E}_{\rho}+\vec{E}_{-\rho}=\frac{\rho}{3 \varepsilon_{0}}\left(\vec{r}-\vec{r}^{\prime}\right)
\end{gathered}
$$

Notice from the figure $\vec{r}=\vec{a}+\vec{r}^{\prime}$ where $\vec{a}=a \hat{z}$
so $\vec{r}^{\prime}=\vec{r}-\vec{a}$
Thus $\vec{E}=\frac{\rho}{3 \varepsilon_{0}} \vec{a}$ the field is uniform in the hale
4. I will use the method of In ages, but I do nat recenter what the image charge ion a sphere looks like, so I will derive it,
$d\{$
($1+\frac{1}{a}$

$$
\begin{aligned}
\phi & =\sum_{l} \frac{A_{l}}{r^{1+1}} P_{l}+\frac{2}{4 \pi \pi} \sum_{l}^{l}\left(\frac{r}{d}\right)^{l} P_{l} \\
& =0 \text { at } r=a \\
0 & =\sum_{l}\left(\frac{A_{l}}{a^{l+1}}+\frac{a^{l}}{d^{1+1}}\right) P_{l}(\cos 0) \cdot \frac{\varepsilon}{4 \pi l} \\
& A_{l}=-\frac{a^{2 l+1}}{d^{1+1}}
\end{aligned}
$$

So

$$
\phi=\frac{2}{4 \pi r_{0}}[\sum_{l} \frac{r^{l}}{d^{l+1}} P_{l}+\underbrace{\sum_{l}-\frac{a^{2 l+1}}{d^{l+1}} \frac{1}{r^{l+1}} P_{l}}]
$$

write as $-\frac{a}{d} \sum_{l} \frac{\left(\frac{a^{2}}{d}\right)^{e}}{r^{l+1}} \mathrm{Pe}$
thus, the indore charge is $q^{\prime}=-\frac{a}{d} q$
at $d^{\prime}=\frac{a^{2}}{d}$
Back to the dipole problem. Model the dipole as a positive and negative charge a distance 2ε aport. where $p=2 \varepsilon q$

$$
\stackrel{2 \varepsilon}{\stackrel{2 \varepsilon}{\rightleftarrows}}++q
$$

We have charge 2 at $d+\varepsilon$, and $-z$ at $d-\varepsilon$

$$
-\frac{a}{d+\varepsilon} 2 \text { at } \frac{a^{2}}{d+\varepsilon}
$$

and $\frac{a}{d-\varepsilon} 2$ at $\frac{a^{2}}{d-\varepsilon}$

So, inside the sphere we have the inge charges:

Since the charges are of different magnitude, this is NOT a pine dipole, it is a dipole + a monopod.

I will extract out the dipole and nonayole terms
Image dipole: separate $+\frac{a_{2}}{d+2}$ of the $\frac{a q}{d-z}$ ant:

$$
\begin{aligned}
& \frac{a_{q}}{d-\varepsilon}=\frac{a q}{d+\varepsilon}-\frac{a_{q}}{d+\varepsilon}+\frac{a_{q}}{d-\varepsilon}=\frac{a_{q}}{d+\varepsilon}+a q\left(-\frac{1}{d+\varepsilon}+\frac{1}{d-\varepsilon}\right) \\
&=\frac{a q}{d+\varepsilon}+\frac{a q}{d^{2}-\varepsilon^{2}} \cdot 2 \varepsilon \\
& \text { contributes } \\
& \text { to dipole } \quad \text { Monopole term }
\end{aligned}
$$

we have

$$
-\frac{a}{d+\varepsilon} q \quad \frac{a q}{d t}+\frac{a q}{d^{2}-\varepsilon^{2}} \cdot 2 \varepsilon
$$

$a^{2}\left(\frac{d}{d-\varepsilon}-\frac{1}{d+\varepsilon}\right)$
dipole term: $p^{\prime}=$ distance. charge

$$
=\frac{a^{2} \cdot 2 \varepsilon}{d^{2}-\varepsilon^{2}}
$$

$$
\begin{aligned}
& =\frac{a^{2} \cdot 2 \varepsilon}{d^{2}-\varepsilon^{2}} \cdot \frac{a q}{d+\varepsilon} \\
& \simeq \frac{a^{3}}{d^{3}} \cdot 2 \varepsilon q=\frac{a^{3}}{d^{3}} p
\end{aligned}
$$

so the image dipole is a factor of $\frac{a^{3}}{d^{3}}$ smaller than the actual dipole at a distance of $\frac{a^{2}}{d}$ from the center of the sphere.
the monopole term is $\frac{a q \cdot 2 \varepsilon}{d^{2}-\varepsilon^{2}}=\frac{a}{d^{2}} p$ at a distance of $\frac{a^{2}}{d}$ as well.

Summing up

$$
\phi_{\text {total }}=\frac{1}{4 \pi \varepsilon_{0}}[\underbrace{}_{\text {dipole }} \frac{\vec{p}^{\prime} \cdot \vec{r}_{p}}{r_{p}^{3}}+\frac{\vec{p}^{\prime} \cdot \vec{r}_{p^{\prime}}}{r_{p^{\prime}}^{3}}+\frac{\frac{a}{d^{2} p}}{r_{p}}]
$$

now we need to figs ant what \vec{r}_{p}, \vec{r}_{p} are

$$
\begin{array}{cc}
\vec{d}=d \hat{z} & \vec{r}=\vec{d}+\vec{r}_{p} \\
\vec{d}^{\prime}=d^{\prime} \hat{i} & \vec{r}=\vec{d}^{\prime}+\vec{r}_{p}^{\prime} \\
\text { and } & \left|r_{p}\right|^{2}=r^{2}+d^{2}-2 r d \cos \theta \\
& \left|r_{p}^{\prime}\right|^{2}=r^{2}+d^{\prime 2}-2 r d^{\prime} \cos \theta
\end{array}
$$

$$
\vec{r}=\vec{d}+\vec{r}_{p} \Rightarrow \vec{r}_{p}=\vec{r}-\vec{d}
$$

$$
\vec{r}_{p^{\prime}}=\vec{r}-\vec{d}^{\prime}
$$

so,
you may verify that at $r=a, \phi=0$ for all θ

$$
\begin{aligned}
& \phi_{\text {royal }}=\frac{p}{4 \pi \varepsilon_{0}}\left[\frac{\hat{z} \cdot(\vec{r}-\vec{d})}{\left.\left(r^{2}+d^{2}-2 r d \cos \theta\right)^{3 / 2}+\frac{\frac{a^{3}}{d^{3}} \hat{z} \cdot\left(\vec{r}-\vec{d}^{\prime}\right)}{\left(r^{2}+d^{\prime 2}-2 r d^{\prime} \cos \theta\right)^{3 / 2}}+\frac{\frac{a}{d^{2}}}{\left(r^{2}+d^{\prime d^{\prime}}-2 r d^{\prime} \operatorname{sos}\right)^{1 / 2}}\right]}\right] \\
& =\frac{p}{4 \pi \varepsilon_{0}}\left[\frac{r \cos \theta-d}{\left(r^{2}+d^{2}-2 r d \cos \theta\right)^{3 / 2}}+\frac{a^{3}}{d^{3}} \frac{\left(r \cos \theta-\frac{a^{2}}{d}\right)}{\left(r^{2}+\left(\frac{a^{2}}{\alpha}\right)^{2}-2 r \frac{a^{2}}{d} \cos \theta\right)^{3 / 2}}+\frac{a}{d^{2}} \frac{1}{\left(r^{2}+\left(\frac{a^{2}}{\alpha}\right)^{2}-2 r \frac{a}{2}^{2} \cos \theta\right)^{\frac{1}{2}}}\right]
\end{aligned}
$$

PHYSICS 210B, Winter 2010

Final Exam (100 points in total)

- Closed books and closed notes
- Please write down the necessary intermediate steps
- Write your answers in the space provided. Continue on the back if necessary.
- A formula sheet is provided at the end of the exam.

Name:
ID: \qquad .

Problem 1: \qquad

Problem 2: \qquad

Problem 3: \qquad

Problem 4: \qquad

Problem 5: \qquad

Total:

1. An aperture Σ in an opaque screen is illuminated by a spherical wave converging towards a point P located in a parallel plane a distance z behind the screen (shown below).
(a) Find the quadratic-phase approximation to the illuminating wavefront in the plane of the aperture, assuming that the coordinates of P in the (x, y) plane are ($0, \mathrm{Y}$). (10 points)
(b) Assuming Fresnel diffraction from the plane of the aperture to the plane containing P , show that in the above case the observed intensity distribution is the Fraunhofer diffraction pattern of the aperture, centered on the point P. (10 points)

2. Two point charges $+q$ and $-q$ are placed at opposite poles of a spherical balloon of initial radius R_{0}. The radius of the balloon is set to oscillate as follows: $R(t)=R_{0}+\rho \sin \omega t$ where $\rho \omega \ll c$.
(a) Determine the total power radiated by the oscillating balloon, if any, in term of $q, R_{0, \rho}$ and ω. (10 points)
(b) Suppose instead that charges are deposited on the balloon as described below. For each case, determine the ratio of the total power radiated by the oscillating balloon, if any, to the total power radiated in (a). Show your work and explain your reasoning. (10 points)

- One point charge $+q$ is placed at a given point on the balloon. The radius of the balloon is set to oscillate as above.
- Total charge $+q$ is deposited uniformly on the surface of the balloon. The radius of the balloon is set to oscillate as above.

3. An electromagnetic wave, $\vec{E}=E_{0} e^{i(k x \sin \theta+k z \cos \theta-\omega t)} \hat{y}$, is incident from inside a media with $\varepsilon \mu>\varepsilon_{0} \mu_{0}$ on its plane surface as shown in the figure below, where the incident angle (θ) is larger than the critical angle $\left(\theta_{c}\right)$.
(a) Determine the depth of penetration (δ) of the evanescent wave into the free space in term of θ, θ_{c}, c and λ. Does the result depend on the wave polarization? [Hint: δ is defined as the depth when the magnitude of the evanescent wave decreases to $1 / e$.] (10 points)
(b) Show that there is no energy transport across the boundary in this case. (10 points)

4. A relativistic particle with the rest mass m and energy total E collides with a similar particle, initially at rest in the laboratory frame. Find:
(a) The velocity of the center of mass of the system in the lab frame. (7 points)
(b) The total energy of the system in the center-of-mass frame. (7 points)
(c) The final velocities of both particles (in the lab frame), if their final velocities are parallel to the incoming velocity. (6 points)
5. A relativistic particle of charge q is constrained to move along a circle of radius a at a constant angular frequency ω. The circle lies on the x-y plane of a Cartesian coordinate system which has an origin that is at the center of the circle.
(a) Find the retarded time t ' associated with an observation made at time t in the lab frame at point b along the z -axis (perpendicular to the circle). (5 point)
(b) Find the scalar potential (Φ) measured at this point at time t in the lab frame. (8 points)
(c) Find the vector potential (\vec{A}) measured at the same location and time t. (7 points)

Formula Sheet for Final

You may use any of the following equations without derivation.

$$
\begin{aligned}
& \vec{E}=\vec{E}_{0} e^{-i(\omega t-\vec{k} \cdot \vec{r})} \quad \vec{B}=\vec{B}_{0} e^{-i(\omega t-\vec{k} \cdot \vec{r})} \quad \vec{B}=\sqrt{\mu \varepsilon} \hat{k} \times \vec{E} \\
& v=\frac{\omega}{k}=\frac{1}{\sqrt{\varepsilon \mu}} \quad n=\frac{\sqrt{\mu \varepsilon}}{\sqrt{\mu_{0} \varepsilon_{0}}} \quad k=\frac{2 \pi}{\lambda} \quad \theta_{c}=\sin ^{-1}\left(\frac{n^{\prime}}{n}\right) \\
& \text { TE waves: } \vec{\nabla}_{t} B_{z}=-\frac{i k_{c}^{2}}{k_{g}} \vec{B}_{t} \quad \vec{B}_{t}=\frac{k_{g}}{\omega}\left(\hat{z} \times \vec{E}_{t}\right) \quad k_{0}^{2}=k_{c}^{2}+k_{g}^{2} \\
& \text { TM waves: } \vec{\nabla}_{t} E_{z}=-\frac{i k_{c}^{2}}{k_{g}} \vec{E}_{t} \quad \vec{E}_{t}=-\frac{k_{g}}{\mu \varepsilon \omega}\left(\hat{\mathrm{z}} \times \vec{B}_{t}\right) \\
& \vec{p}=\int \vec{x}^{\prime} \rho\left(\vec{x}^{\prime}\right) d^{3} x^{\prime} \quad \quad \vec{A}_{E D}(\vec{x})=-\frac{i \mu_{0} \omega \vec{p}}{4 \pi} \frac{e^{i k r}}{r} \\
& \vec{E}_{E D}=-\frac{k^{2}}{4 \pi \varepsilon_{0}} \frac{e^{i k r}}{r}[\hat{n} \times(\hat{n} \times \vec{p})]=Z_{0} \vec{H}_{E D} \times \hat{n} \quad Z_{0}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} \quad \frac{d P}{d \Omega}=\frac{c^{2} k^{4} Z_{0}}{32 \pi^{2}}|\hat{n} \times \vec{p}|^{2} \\
& \vec{m}=\frac{1}{2} \int\left(\vec{x}^{\prime} \times \vec{J}\right) d^{3} X^{\prime} \quad \vec{B}_{M D}=\frac{\mu_{0} k^{2}}{4 \pi} \frac{e^{i k r}}{r}(\hat{n} \times \vec{m}) \times \hat{n} \quad \vec{E}_{M D}=\frac{Z_{0} k^{2}}{4 \pi} \frac{e^{i k r}}{r} \hat{n} \times \vec{m} \quad \frac{d P}{d \Omega}=\frac{k^{4} Z_{0}}{32 \pi^{2}}|\hat{n} \times \vec{m}|^{2} \\
& \frac{d \sigma}{d \Omega}=\frac{k^{4} a^{6}}{2}\left|\frac{\varepsilon_{r}-1}{\varepsilon_{r}+2}\right|^{2}\left(1+\cos ^{2} \theta\right) \quad \frac{d \sigma}{d \Omega}=k^{4} a^{6}\left[\frac{5}{8}\left(1+\cos ^{2} \theta\right)-\cos \theta\right] \\
& \frac{d \sigma}{d \Omega}=\frac{k^{4} a^{6}}{2}\left|\frac{\varepsilon_{r}-1}{\varepsilon_{r}+2}\right|^{2}\left(1+\cos ^{2} \theta\right)|S(\vec{q})|^{2} \quad S(\vec{q})=\sum_{i} e^{-i \vec{q} \cdot \bar{x}_{i}} \\
& \frac{d \sigma}{d \Omega}=\frac{1+\cos ^{2} \theta}{2} r_{0}^{2} \quad \sigma=\frac{8 \pi}{3} r_{0}^{2} \\
& \left(\begin{array}{l}
x_{0}^{\prime} \\
x_{1}^{\prime} \\
x_{2}{ }_{2} \\
x_{3}{ }_{3}
\end{array}\right)=\left(\begin{array}{llll}
\gamma & -\beta \gamma & 0 & 0 \\
-\beta \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \\
& \vec{p}=\gamma m_{0} \vec{u} \quad E=\gamma m_{0} c^{2} \quad p^{\mu}=(E / c, \vec{p}) \quad E=\sqrt{m_{0}^{2} c^{4}+c^{2} p^{2}} \\
& \partial_{\mu} G^{\mu \nu}=\frac{4 \pi}{c} J^{\nu} \quad \partial_{\mu} \wp^{\mu \nu}=0 \quad F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu} \\
& \frac{d P}{d \Omega}=\frac{q^{2}}{4 \pi c^{3}}|\dot{\vec{v}}|^{2} \sin ^{2} \theta \quad P=\frac{2}{3} \frac{q^{2}}{c^{3}}|\dot{\vec{v}}|^{2} \\
& \frac{d P\left(t^{\prime}\right)}{d \Omega}=\frac{q^{2} \dot{v}^{2}}{4 \pi c^{3}} \frac{\sin ^{2} \theta}{(1-\beta \cos \theta)^{5}} \quad P=\frac{2}{3} \frac{q^{2}}{m^{2} c^{3}}\left(\frac{d p}{d t}\right)^{2} \\
& \frac{d P}{d \Omega}=\frac{q^{2}}{4 \pi c^{3}} \frac{\dot{v}^{2}}{(1-\beta \cos \theta)^{3}}\left[1-\frac{\sin ^{2} \theta \cos ^{2} \phi}{\gamma^{2}(1-\beta \cos \theta)^{2}}\right] \quad P=\frac{2}{3} \frac{q^{2} c}{\rho^{2}} \beta^{4} \gamma^{4} \\
& \Phi(\vec{x}, t)=\frac{q}{(1-\hat{n} \cdot \vec{\beta}) R} \quad \vec{A}(\vec{x}, t)=\frac{q \vec{\beta}}{(1-\hat{n} \cdot \vec{\beta}) R} \text { (Evaluated at the retarded time) } \quad t^{\prime}=t-\frac{R}{c}
\end{aligned}
$$

$$
\begin{gathered}
\psi(P)=\frac{1}{4 \pi} \int_{S}\left[\frac{\partial \psi}{\partial n}\left(\frac{e^{i k r}}{r}\right)-\psi \frac{\partial}{\partial n}\left(\frac{e^{i k r}}{r}\right)\right] d a \\
\psi(P)=\frac{1}{i \lambda} \int_{S_{1}} \psi\left(P_{1}\right) \frac{e^{i k r}}{r} \cos \theta d a \\
\psi(u, v)=\frac{e^{i k z}}{i \lambda z} e^{i \frac{k}{2 z}\left(u^{2}+v^{2}\right)} \int_{-\infty}^{\infty}\left[\psi(x, y) e^{i \frac{k}{2 z}\left(x^{2}+y^{2}\right)}\right] e^{-i \frac{i \pi}{\lambda z}(u x+v y)} d x d y \\
\psi(u, v)=\frac{e^{i k z}}{i \lambda z} e^{i \frac{k}{2 z}\left(u^{2}+v^{2}\right)} \int_{-\infty}^{\infty} \psi(x, y) e^{-i \frac{2 \pi}{\lambda z}(u x+v y)} d x d y
\end{gathered}
$$

3. a.

The incoming spherical wave is

$$
\begin{aligned}
\psi_{i a c} & =A \frac{e^{-i k r}}{r} \\
r^{2} & =\left(x_{0}-\xi\right)^{2}+\left(y_{0}-\xi\right)^{2}+z^{2} \\
& =z^{2}\left(1+\frac{\left(x_{0}-\xi\right)^{2}+\left(y_{0}-\xi\right)^{2}}{z^{2}}\right)^{1 / 2} \\
r & \simeq z+\frac{\left(x_{0}-4\right)^{2}+\left(y_{0}-\xi\right)^{2}}{2 z}
\end{aligned}
$$

So $\psi_{\text {inc }} \simeq \frac{A}{2} e^{-i k z} e^{-\frac{i k}{2 z}\left[\left(x_{0}-y\right)^{2}+\left(y_{0}-\xi\right)^{2}\right]}$
b. The Diffraction Integral takes the form

$$
\psi(x, y)=\frac{k}{2 \pi i} \int_{\Sigma} d \xi d \eta \frac{e^{i k r}}{r} \psi_{i n c}(\xi, \eta)
$$

Expanding r as use did before:
(the obliquity factors $=1$ Pos smallangles)

$$
r^{2}=(x-\eta)^{2}+(y-\xi)^{2}+z^{2}
$$

We have a choice as to what approximations to make, which are volicl in different regions.

- continuing as in part a, we can write

$$
r \simeq z+\frac{(x-4)^{2}+(y-5)^{2}}{22}
$$

"Freed Diffraction"

- Or, instead expand the square,

$$
\begin{aligned}
r^{2} & =\underbrace{x^{2}}_{R^{2}+y^{2}+z^{2}}-2 x y-2 y \xi+y^{2}+\xi^{2} \\
& =R^{2}\left(1-2 \frac{(x y+y \xi)}{R^{2}}+\frac{y^{2}+\xi^{2}}{R^{2}}\right)
\end{aligned}
$$

so

$$
r \simeq z-\frac{(x y+y s)}{z}
$$

I have used $R \geq 2$
approximately negligible if $x \gg y$ and $y \gg \xi$
"Fraunh hotien Diffraction"

Fresnel Diffraction is valid in the neman zone $F \geq 1$
Frounoffen Diffraction is rolled in the for zone $F \ll 1$
where F is the fresnel number

$$
\begin{aligned}
F= & \frac{a^{2}}{2 \lambda} \quad \text { and } a \text { is a } \\
& \text { Choroctenistic size of } \\
& \text { the operators. }
\end{aligned}
$$

- when we say "Framed Diffraction," we mean near-zoue ditturactiden, as

$$
\psi_{\text {Fresnel }}(x, y)=\frac{k}{2 \pi i} \int \psi_{\text {inc }}(\xi, \eta) \frac{e^{i k z}}{z} e^{\frac{i k}{2 z}\left[(x-\eta)^{2}+(y-\xi)^{2}\right]} d \xi d y
$$

- When we say "Fromenhafa Dithochioy," we mean fas-zome,

$$
\psi_{\text {Framhofen }}(x, y)=\frac{k}{2 \pi i} \int \psi_{\text {inc }}(\xi, y) \frac{e^{i k z}}{2} e^{-\frac{i k}{2}(x y+y \xi)} d y d \xi
$$

liven terms, Fomesies Transtaras

So, For the spharicul incoming Wars,

$$
\begin{aligned}
\Psi_{\text {Fresnel }} & =\frac{k}{2 \pi i} \frac{e^{i k 2}}{2} \frac{A e^{-i k z}}{2} \int \underbrace{\left.e^{2}+(y-\xi)^{2}\right]}_{e^{\frac{i k}{22}\left(x^{2}-x_{0}^{2}+y^{2}-y_{0}^{2}\right)} \int_{e^{-\frac{i k}{2}\left[\left(x_{0}-y\right)^{2}+\left(y_{0}-\xi\right)^{2}\right]}}^{e^{\frac{i k}{22}\left[\left(x-x_{0}\right) y+\left(y-y_{0}\right) \xi\right]}} d \xi d \xi} d y \\
& =\text { constants } \cdot \int_{\varepsilon} d y d \xi e^{-\frac{i k}{2}\left[\left(x-x_{0}\right) y+\left(y-y_{0}\right) \xi\right]}
\end{aligned}
$$

but me see that this is exactly the Framhofen Diffraction pattern of the aperture. A \sin.end at $\left(x_{0}, y_{0}\right)$ ware was incident on the aperture.
2. a. $\quad \rho(x)=q \delta(x) \delta(y)\left[\delta\left(z-\left(R_{0}+\rho \sin \omega x\right)\right)-\delta\left(z+\left(R_{0}+\sin \omega+1\right)\right]\right.$

Note: there ore higher the dipole moment for this confrumation is multipobs, bat we ore ishantig, then.

$$
\begin{aligned}
\vec{p}=\int \vec{x} \rho(\vec{x}) & =\hat{z} q \int z\left(\delta\left(z-\left(R_{0}+\rho \sin \omega t\right)\right)-\delta\left(z+\left(n_{0}+\sin +t\right)\right)\right) \\
& =q\left[R_{0}+\rho \sin \omega t-\left(-\left(R_{0}+\rho \sin \omega t\right)\right)\right] \hat{z} \\
& =\left(2 q R_{0}+2 q \rho \sin \omega t\right) \hat{z}
\end{aligned}
$$

no tine deprenclence, does not radiate'
radiating dipole $\quad \vec{p}=2 q \rho \hat{z}$

$$
\begin{aligned}
\frac{d p}{d \Omega} & =\frac{c^{2} k^{4} z_{0}}{32 \pi^{2}}|\hat{r} \times \hat{z}|^{2} 4 q^{2} \rho^{2} \\
& =\frac{\omega^{4}}{8 \pi^{2} c^{2}} z_{0} q^{2} \rho^{2} \sin ^{2} \theta
\end{aligned}
$$

$$
\hat{r} \times \hat{z}=\frac{\sin \theta \cos \phi \hat{y}}{\sin \theta \sin \phi-\hat{x}}
$$

$$
|\hat{r} \times \hat{z}|^{2}=\sin ^{2} \theta
$$

$$
\begin{aligned}
& \int \sin ^{2} \theta d \Omega=2 \pi \int \sin ^{3} \theta d \theta \\
& \int_{0}^{\sin \theta\left(1-\cos ^{2} \theta\right)} \\
& \int_{0}^{\pi} \sin \theta-\int_{0}^{\pi} \cos ^{2} \theta \sin \theta \\
& u=\cos \theta \\
& d u=-\sin \theta d \theta \\
&-\left.\cos \theta\right|_{0} ^{\pi}+\int_{1}^{-1} u^{2} d u \\
&-[-1-1]+\frac{u^{3}}{3}[-1 \\
&= \frac{8 \pi}{3}
\end{aligned}
$$

So, $P=\frac{q^{2} p^{2} w^{4} z_{0}}{3 \pi c^{2}}$
b,
for 1 chage,
$\vec{p} \Rightarrow q R_{0}+q \rho \sin \omega t \quad$ So the dirole roment is halwed
Since the pomer rodiaited $\sim p^{2}, \frac{1}{4}$ the pames is radiatod
for a unifarm chage

$$
\vec{p} \rightarrow 0
$$

we hane a monopole \rightarrow no radiation.
3. $a_{\text {, }}$ The transmitted ware is $\quad \vec{E}_{T}=E_{T} \hat{y} e^{i\left(\vec{k}_{T} \cdot \vec{x}\right)}$

$$
\begin{aligned}
& \vec{H}_{T}=\frac{1}{\eta_{2}} \quad \hat{k}_{T} \times \vec{E}_{T} \\
& \vec{k}_{T}=\frac{\omega}{c}\left[\begin{array}{c}
\sin \beta \\
0 \\
\cos \beta
\end{array}\right]
\end{aligned}
$$

snell Law: $n \sin \theta=\sin \beta \Rightarrow \sin \theta_{C}=\frac{1}{n}$

$$
\begin{aligned}
\cos \beta & =\sqrt{1-\sin ^{2} \beta}=\sqrt{1-x^{2} \sin ^{2} \theta} \\
& =\left[1-\left(\frac{\sin \theta}{\sin \theta_{c}}\right)^{2}\right]^{1 / 2}
\end{aligned}
$$

- ET will be just a magnitrole and a phase shift, it does nat affect the propagation.
- Look at $e^{i\left(\vec{k}_{T} \cdot \vec{x}\right)}=e^{i \frac{\omega}{c}[\sin \beta x+\cos \beta 2]}$

$$
=n \sin \theta
$$

$$
=\underbrace{\left[1-\frac{\sin \theta_{0}^{2}}{\sin \theta_{c}^{2}}\right]^{1 / 2}}_{\text {which is }}
$$

Which is imaginary for $\theta>\theta_{C}$

$$
=i\left[\left(\frac{\sin \theta}{\sin \theta_{C}}\right)^{2}-1\right]^{1 / 2}
$$

$$
=\underbrace{e^{i n \frac{\omega}{c} \sin \theta x}}_{\substack{\text { Propagation } \\ \text { in } x}}
$$

δ is defaneal by

$$
e^{-\frac{\omega}{d} \sqrt{\frac{\alpha^{2}}{\delta^{2}-1}} \delta}=e^{-1}
$$

so

$$
\delta=\frac{c}{\omega \sqrt{\frac{\sin ^{2} \theta}{\sin ^{2} \theta_{c}}-1}=\left(\frac{\lambda}{2 \pi\left[\frac{\sin ^{2} \theta}{\sin ^{2} \theta_{c}}-1\right]^{1 / 2}}\right) .}
$$

b. The enngy Tronspant acioss the boundary is

$$
\begin{array}{r}
\hat{z} \cdot\langle\vec{s}\rangle=\frac{1}{2} \hat{z} \cdot \operatorname{Re}\left(\vec{E} \times \vec{H}^{*}\right)=\frac{\left|E_{T}\right|^{2}}{2 \eta} \operatorname{Re}\left[\hat{z} \cdot\left(\hat{y} \times \hat{k}_{T}+\hat{y}\right)\right] \\
\hat{z} \cdot\left[\begin{array}{c}
\sin \beta \\
0 \\
\cos \beta
\end{array}\right]=\cos \beta
\end{array}
$$

but $\cos \beta$ is parely inagimary

$$
\begin{array}{ll}
\text { so } & \operatorname{Re}[\cos \beta]=0 \\
\Rightarrow & \sum^{n} \cdot\langle\vec{s}\rangle=0
\end{array}
$$

4. Lab
a.

$$
\begin{array}{ll}
p_{1}^{\mu}=\left[\begin{array}{c}
F / c \\
\overrightarrow{p_{1}}
\end{array}\right] & p_{2}^{\mu}=\left[\begin{array}{c}
M c \\
0 \\
0
\end{array}\right] \quad p^{\mu}=p_{1}^{\mu}+p_{2}^{\mu} \\
C 0 M \\
p_{1}^{\prime \mu}=\left[\begin{array}{c}
\frac{w}{2 c} \\
p^{\prime}
\end{array}\right] & p_{2}^{\prime \mu}=\left[\begin{array}{c}
\frac{w}{2 c} \\
-p^{\prime}
\end{array}\right] \quad p^{\prime \mu}=p_{1}^{\prime \mu}+p_{2}^{\prime \mu}
\end{array}
$$

where W is the total enagy in the CoMr from

From lorentz invariance

$$
\left.p^{\mu}=\left[\frac{E+M c^{2}}{c}\right] \quad \overrightarrow{P_{1}}\right] \quad \text { and } p^{\prime \mu}=\left[\begin{array}{c}
\frac{w}{c} \\
\overrightarrow{0}
\end{array}\right]
$$

are related by

$$
\begin{array}{lll}
x_{0}=\gamma \operatorname{com}\left(x_{0}^{\prime}+\beta x_{01}^{\prime}\right) & \Rightarrow & E+m c^{2}=\gamma W \\
x_{1}=\gamma \operatorname{com}\left(x_{1}^{\prime}+\beta x_{0}^{\prime}\right) & \Rightarrow \quad P_{1}=\gamma \beta \frac{W}{c}
\end{array}
$$

so $\beta=\frac{P_{1} C}{\gamma w}=\frac{P_{1} c}{E+m c^{2}}$
now, P_{1} is related to $E, \quad\left(\frac{E}{c}\right)^{2}-P_{1}^{2}=m^{2} c^{2}$

$$
\begin{aligned}
& P_{1}^{2}=\left(\frac{E}{c}\right)^{2}-m^{2} c^{2} \\
& P_{c}=\sqrt{E^{2}-m^{2} c^{4}}
\end{aligned}
$$

So,

$$
\beta_{c o m}=\frac{\sqrt{E^{2}-m^{2} c^{4}}}{E+m c^{2}}
$$

b.

$$
\begin{aligned}
& p^{\mu} p_{\mu}=p^{\mu} P_{\mu}^{\prime} \\
& \left(p_{1}^{\mu}+p_{2}^{\mu}\right)\left(p_{1 \mu}+p_{2 \mu}\right)=p_{1}^{\mu} P_{1 \mu}+p_{2}^{\mu} P_{2 \mu}+2 p_{1}^{\mu} P_{2 \mu}=2 M^{2} c^{2}+2 \mathbb{E M} \\
& P^{\prime \mu} P_{\mu}^{\prime}=\left(\frac{w}{c}\right)^{2}
\end{aligned}
$$

So, $\quad W^{2}=2 m c^{2}\left(m c^{2}+E\right)$
C. After the collision, in the Com frame, $P_{1}^{3}=\left[\begin{array}{c}\frac{h}{2 C} \\ -p^{\prime}\end{array}\right]$ simply expressing P^{\prime} in terms of the initial momentum P_{1},

$$
P_{2}^{\prime} \mu=\left[\begin{array}{c}
w / 2 c \\
+p^{\prime}
\end{array}\right]
$$

$$
P^{\prime}=\gamma\left(P_{1}-\beta \frac{E}{C}\right)
$$

transforming the final momentum in the COMI from back into the lab frame, $P_{\text {final }}=\gamma\left(-p^{\prime}+\beta \frac{W}{2 c}\right)$ and plug in P^{\prime} from above

$$
\begin{aligned}
& =\gamma\left(-\gamma\left(P_{1}-\beta \frac{E}{c}\right)+\beta \frac{w}{2 c}\right)=-\gamma^{2}\left(P_{1}-\beta \frac{E}{c}\right)+\lambda \frac{\beta}{2 c} \gamma \omega \\
& \uparrow \int_{E+m c^{2}} \text { from } p^{+} a \\
& r^{2}=\frac{1}{1-\beta^{2}}=\frac{E_{+M c^{2}}^{2}}{2 M c^{2}} \text { Eam } p^{+} a \\
& =-\frac{E+m c^{2}}{2 m c^{2}}\left(P_{1}-\frac{E}{c} \frac{\sqrt{E^{2}-m^{2} c^{4}}}{E+m c^{2}}\right)+\frac{1}{2 c} \sqrt{E^{2}-m^{2} c^{4}} \\
& \frac{1}{c} \sqrt{E^{2}-n c^{4}} \\
& =-\frac{1}{c} \frac{\sqrt{E^{2}-m^{2} c^{4}}}{2 m c^{2}}\left(E+m c^{2}-E\right)+\frac{1}{2 c} \sqrt{E^{2}-m^{2} c^{4}} \\
& =-\frac{1}{2 c} \sqrt{E^{2}-m^{2} c^{4}}+\frac{1}{2 c} \sqrt{E^{2} \cdot m^{2} c^{4}}=0
\end{aligned}
$$

So the first particle stops,
the second particle..
$P_{\text {2final }}=\gamma\left(p^{\prime}+\beta \frac{w}{2 c}\right)$
following the same procedure, the last 2 terms add instrod of subtract.

$$
\begin{aligned}
&=\frac{1}{c} \sqrt{E^{2}-m^{2} d^{4}} \\
& \gamma M V=\frac{1}{c} \sqrt{E^{2}-\vec{n}^{4}}= \frac{c^{2} m^{2} v^{2}=}{\left(1-\left(\frac{v}{c}\right)^{2}\right)}=E^{2}-m^{2} c^{4} \\
& v^{2}\left(c^{2} m^{2}\right)=\left(E^{2}-m^{2} c^{4}\right)\left(1-\left(\frac{v}{c}\right)^{2}\right) \\
& v^{2}\left(c^{2} m^{2}\right)=-\left(\left(\frac{E}{c}\right)^{2}-m^{2} c^{2}\right) v^{2}+\left(E^{2}-m^{2} c^{4}\right) \\
& v^{2}\left(c^{2} m^{2}+\left(\frac{E}{c}\right)^{2}-m^{2} c^{2}\right)=E^{2}-m^{2} c^{4} \\
& \frac{V^{2}}{c^{2}}=\frac{E^{2}-m^{2} c \|}{E^{2}} \\
&=1-\frac{m^{2} c^{4}}{\sigma_{i}^{2} m^{2} c^{4}}=1-\frac{1}{\gamma_{i}^{2}}=\beta_{i}^{2}
\end{aligned}
$$

So $\beta_{f}^{2}=\beta_{i}^{2}$

Thus if the particles move in the same direction often the collision as beque the collision, the moving particle stops and the other particle gains the same velocity as the incoming pastich hod.
5.

a. $\quad t^{\prime}=t-\frac{R}{c}=t-\frac{1}{c}\left[b^{2}+a^{2}\right]^{1 / 2}$
b.

$$
\begin{aligned}
& \rho=q \delta(z) \delta(x-a \cos \omega t) \delta(y-a \sin \omega t) \\
& \left.\phi(\vec{a}, t)=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho\left(x^{\prime}, t_{\text {ret }}\right)}{\left[\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}\right.}+\left(2-z^{\prime}\right)^{2}\right]^{1 / 2} d^{3} x^{\prime} \\
& \Phi(0,0, b, t)=\frac{q}{4 \pi \varepsilon_{0}} \int \frac{\delta\left(z^{\prime}\right) \delta\left(x^{\prime}-a \cos b z^{\prime}\right) \delta\left(y-a \sin \omega c^{\prime}\right)}{\left[x^{\prime 2}+y^{\prime 2}+\left(b-z^{\prime}\right)^{2}\right]^{1 / 2}} \\
& \\
& =\frac{q}{4 \pi \varepsilon_{0}\left[a^{2}+b^{2}\right]^{1 / 2}}
\end{aligned}
$$

c. $\vec{J}=q \delta\left(\vec{x}-\vec{x}^{\prime}\right) \vec{V}$

$$
\begin{aligned}
& \vec{x}^{\prime}=a\left(\cos \omega t \hat{x}^{1}+\sin \omega x \hat{y}\right) \\
& \dot{x}^{\prime}=a \omega(-\sin \omega t \hat{x}+\cos \omega t \hat{y})
\end{aligned}
$$

$$
=q \delta(2) \delta\left(x-a \cos \omega_{t}\right) \delta(y-a \sin \omega t) a \xi(-\sin \omega t \hat{x}+\cos \omega t \hat{y})
$$

$$
\begin{aligned}
& \vec{A}=\frac{\mu_{0}}{4 \pi} \int \frac{\vec{J}_{r e t}}{\left[\left(x-y^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(2-z^{\prime}\right)^{2}\right]^{1 / 2}}=\frac{\mu_{0} a \omega q}{4 \pi} \int \frac{\delta\left(z^{\prime}\right) \delta\left(x^{\prime}-a \cos \omega z^{\prime}\right) \delta\left(y^{\prime}-a \sin =\omega t^{\prime}\right)\left(-\sin \omega t^{\prime} \ddot{x}^{\prime}+\cos a t^{\prime}\right)}{[]^{1 / 2}} \\
&
\end{aligned}
$$

$$
\vec{A}(\infty, b, t)=\frac{\mu_{0} a \omega q}{4 \pi}\left[a^{2}+b^{2}\right]^{\prime / 2}\left[-\sin \omega t^{\prime} \hat{x}+\cos \omega z^{\prime} \hat{y}\right]
$$

$$
=\frac{\mu_{0} a \omega q}{4 \pi\left(a^{2}+b^{2}\right)^{1 / 2}}[\hat{y}-i \hat{x}] e^{-i \omega t}
$$

PHYSICS 210B, Winter 2010

Midterm Exam (90 points in total)

- Closed books and closed notes
- Please write down the necessary intermediate steps
- Write your answers in the space provided. Continue on the back if necessary.
- A formula sheet is provided at the end of the exam.

Name:
ID: \qquad .

Problem 1: \qquad

Problem 2: \qquad

Problem 3: \qquad

Total:

1. A transmission line consisting of two concentric circular cylinders of metal with conductivity σ and skin depth δ, as shown, is filled with a uniform lossless dielectric (μ, ε). A TEM mode is propagated along this line.

(a) Show that the time-averaged power flow along the line is $P=\sqrt{\frac{\mu}{\varepsilon}} \pi a^{2}\left|H_{0}\right|^{2} \ln \left(\frac{b}{a}\right)$, where H_{0} is the peak value of the azimuthal magnetic field at the surface of the inner conductor. (10 points).
(b) Show that the transmitted power is attenuated along the line as $P(z)=P e^{-2 \gamma z}$ where $\gamma=\frac{1}{2 \sigma \delta} \sqrt{\frac{\varepsilon}{\mu}} \frac{(1 / a+1 / b)}{\ln (b / a)}$. (10 points)
(c) The characteristic impedance Z_{0} of the line is defined as the ratio of the voltage between the cylinders to the axial current flowing in one of them at any position z . Show that for this line $Z_{0}=\frac{1}{2 \pi} \sqrt{\frac{\mu}{\varepsilon}} \ln (b / a)$. (10 points).
2. A pulsar emits bursts of radio waves which are observed from the Earth at two different frequencies, ω_{1} and ω_{2}. An astronomer notes that the arrival time of the bursts is delayed at the lower frequency, that is, the pulse at ω_{1} arrives after the pulse at ω_{2}. The delay, τ is due to dispersion in the interstellar medium. Assume this medium consists of ionized hydrogen (called the dilute plasma).
(a) Find the index of refraction of the dilute plasma. (To get full credit, you need to first write down the equation of the motion of a free electron in an oscillating electric wave). (15 points)
(b) Find the distance from the pulsar to the Earth. (15 points)
[Assume m is the mass of the electron and N the number of electrons per unit volume.]
3. Consider a "classical" hydrogen atom with the electron moving in a circular orbit at the Bohr radius $a_{0}=\frac{4 \pi \varepsilon_{0} \hbar^{2}}{m e^{2}}$. Assume the electron's orbit is in the $\mathrm{x}-\mathrm{y}$ plane with the period T.
a. Find the lowest multipole moment. (10 points)
b. Calculate the electric and magnetic fields in the radiation zone. (10 points)
c. Calculate the power radiated per unit solid angle. (10 points)
[Note, you just need to calculate (b) and (c) for the lowest multipole moment].

Formula Sheet for Midterm

You may use any of the following equations without derivation.

$$
\begin{aligned}
& \vec{P}=\varepsilon_{0} \chi_{e} \vec{E} \quad \varepsilon=\left(1+\chi_{e}\right) \varepsilon_{0} \\
& \vec{E}=\vec{E}_{0} e^{-i(\omega t-\vec{k} \cdot \vec{r})} \quad \vec{B}=\vec{B}_{0} e^{-i(\omega t-\vec{k} \cdot \vec{r})} \quad \vec{B}=\sqrt{\mu \varepsilon} \hat{k} \times \vec{E} \quad v=\frac{\omega}{k}=\frac{1}{\sqrt{\varepsilon \mu}} \\
& n=\frac{c}{v} \quad k=\frac{n \omega}{c} \\
& \vec{\nabla} \cdot \vec{E}=\frac{\rho}{\varepsilon_{0}} \\
& D_{1}^{\perp}-D_{2}^{\perp}=\sigma_{f} \\
& B_{1}^{\perp}=B_{2}^{\perp} \\
& E_{1}^{\|}=E \\
& \vec{H}_{1}^{\|}-\vec{H}_{2}^{\|}=\vec{K}_{f} \times \hat{n} \\
& n \sin \theta=n^{\prime} \sin \theta^{\prime} \quad<\vec{S}^{\prime}>=\frac{1}{2} \operatorname{Re}\left(\overrightarrow{E^{\prime}} \times \vec{H}^{\prime^{*}}\right) \\
& \gamma=-\frac{1}{2 P} \frac{d P}{d z} \quad \frac{d P}{d z}=-\frac{1}{2 \sigma \delta} \oint_{C}|\hat{n} \times \vec{H}|^{2} d l \\
& k^{2}=\mu \varepsilon \omega^{2}+i \mu \sigma \omega \quad k=k_{1}+i k_{2}=\omega \sqrt{\mu \varepsilon\left(1+\frac{i \sigma}{\varepsilon \omega}\right)} \quad \delta=1 / k_{2} \quad \alpha=2 k_{2} \\
& \text { TE waves } \\
& \vec{\nabla}_{t} B_{z}=-\frac{i k_{c}^{2}}{k_{g}} \vec{B}_{t} \quad \vec{B}_{t}=\frac{k_{g}}{\omega}\left(\hat{z} \times \vec{E}_{t}\right) \\
& \text { TM waves } \\
& \vec{\nabla}_{t} E_{z}=-\frac{i k_{c}^{2}}{k_{g}} \vec{E}_{t} \quad \vec{E}_{t}=-\frac{k_{g}}{\mu \varepsilon \omega}\left(\hat{z} \times \vec{B}_{t}\right) \\
& k_{0}^{2}=k_{c}^{2}+k_{g}^{2} \\
& \vec{p}=\int \vec{x}^{\prime} \rho\left(\vec{x}^{\prime}\right) d^{3} x^{\prime} \quad \vec{A}_{E D}(\vec{x})=-\frac{i \mu_{0} \omega \vec{p}}{4 \pi} \frac{e^{i k r}}{r} \quad \vec{B}_{E D}=\frac{\mu_{0} c k^{2}}{4 \pi} \frac{e^{i k r}}{r} \hat{n} \times \vec{p} \\
& \vec{E}_{E D}=-\frac{k^{2}}{4 \pi \varepsilon_{0}} \frac{e^{i k r}}{r}[\hat{n} \times(\hat{n} \times \vec{p})]=Z_{0} \vec{H}_{E D} \times \hat{n} \quad Z_{0}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} \quad \frac{d P}{d \Omega}=\frac{c^{2} k^{4} Z_{0}}{32 \pi^{2}}|\hat{n} \times \vec{p}|^{2} \\
& \vec{m}=\frac{1}{2} \int\left(\vec{x}^{\prime} \times \vec{J}\right) d^{3} x^{\prime} \quad \vec{A}_{M D}(\vec{x})=\frac{\mu_{0} i k}{4 \pi} \frac{e^{i k r}}{r} \hat{n} \times \vec{m} \quad \vec{B}_{M D}=\frac{\mu_{0} k^{2}}{4 \pi} \frac{e^{i k r}}{r}(\hat{n} \times \vec{m}) \times \hat{n} \\
& \vec{E}_{M D}=\frac{Z_{0} k^{2}}{4 \pi} \frac{e^{i k r}}{r} \hat{n} \times \vec{m} \quad \frac{d P}{d \Omega}=\frac{k^{4} Z_{0}}{32 \pi^{2}}|\hat{n} \times \vec{m}|^{2} \\
& \vec{A}_{E Q}(\vec{x})=-\frac{\mu_{0} c k^{2}}{8 \pi} \frac{e^{i k r}}{r} \int \vec{x}^{\prime}\left(\hat{n} \cdot \vec{x}^{\prime}\right) \rho\left(\vec{x}^{\prime}\right) d^{3} x^{\prime} \\
& \vec{B}_{E Q}=-\frac{\mu_{0} i c k^{3}}{24 \pi} \frac{e^{i k r}}{r} \hat{n} \times \vec{Q}(\hat{n}) \\
& \vec{E}_{E Q}=Z_{0}\left(\vec{H}_{E Q} \times \hat{n}\right) \quad \frac{d P}{d \Omega}=\frac{c^{2} k^{6} Z_{0}}{1152 \pi^{2}}|\hat{n} \times \vec{Q}(\hat{n})|^{2} \quad Q_{i}(\hat{n})=\sum_{j} Q_{i j} n_{j}
\end{aligned}
$$

Midterm Solutious

1. Since we have a TEM made, \vec{E}_{t} is a solution to an elactostoxirs pobben

$$
\vec{E}=\frac{E_{0}}{g} \hat{\rho} \quad \vec{H}=\frac{1}{\eta} \hat{z} \times \vec{E}=\frac{1}{\eta} E_{0} \frac{1}{p} \hat{\phi}=\frac{H_{0}}{g} \hat{\phi}
$$

in tarms of $H_{0}, \quad \vec{E}_{t}=\eta H_{0} \frac{a}{p} \hat{\jmath}$

$$
\vec{H}_{t}=H_{0} \frac{a}{r} \hat{\phi}
$$

a. $\left.\quad\left\langle<=\frac{1}{2} \vec{E} \times \vec{H}^{+}=\frac{1}{2} \eta\right| H_{0}\right|^{2} \frac{a^{2}}{r^{2}} \hat{z}$

$$
\langle\hat{p}\rangle=\int\langle s\rangle \cdot 2 d a=\frac{1}{2} \xi\left|H_{0}\right|^{2} a^{2} \int \frac{1}{r^{2}} r d s d p=\pi a^{2} y\left|H_{0}\right|^{2} h b / a
$$

b.

$$
\begin{aligned}
&-\frac{d P}{d a}=\frac{1}{2 \sigma \delta}\left|\hat{n} \times \vec{H}_{11}\right|^{2} \\
&-\frac{\partial P}{\partial 2}=-\int_{\text {caductas }} \frac{\partial P}{\partial a} d e=-\frac{1}{2 \sigma \delta}\left[\int_{b \text { surture }}|H|^{2} d \phi+\int_{\text {asurface }}|H|^{2} d \phi\right] \\
&=-\frac{1}{2 \sigma \delta}\left[2 \pi b\left(H_{b} \frac{a}{b}\right)^{2}+2 \pi a\left(H_{0}\right)^{2}\right] \\
&=-\frac{\pi a^{2}}{\sigma \delta}\left[\frac{1}{b}+\frac{1}{a}\right]\left|H_{0}\right|^{2} \\
& \gamma=-\frac{1}{2 P} \frac{\partial P}{\partial 2}=
\end{aligned}
$$

c. $\quad z=\frac{v}{I}$

$$
V=\int_{a}^{b} \cdot d_{1}=\eta H_{0} a \operatorname{h} b / a
$$

From Anyerb law

$$
\begin{aligned}
& \oint H d \phi=I \\
& 2 \pi r\left(H_{0} \frac{a}{r}\right)=I \\
& z=\frac{\eta H_{0} h b / a}{2 \pi H_{0} a}=\frac{1}{2 H} \sqrt{\frac{\mu}{\varepsilon}} \ln b / a
\end{aligned}
$$

2.a. Write the equation of motion for a single electron:

$$
\begin{array}{ll}
M \ddot{x}=q E-K x & \vec{E}=E_{0} \hat{x} e^{i \omega t} \\
\ddot{x}=\frac{q}{M} E-\omega_{0}^{2} x & x=x_{0} e^{i \omega t} \quad \ddot{x}=-\omega^{2} x \\
\left(\omega_{0}^{2}-\omega^{2}\right) x_{0}=\frac{q}{M} E_{0} &
\end{array}
$$

$$
\Rightarrow \quad x_{0}=\frac{\frac{q}{m} E_{0}}{\left(\omega_{0}^{2}-\omega^{2}\right)}
$$

$\Rightarrow x_{0}=\frac{\frac{q}{m} E_{0}}{\left(\omega_{0}^{2}-\omega^{2}\right)}$ is the amplitude of os
The dipal manat of this election is $\vec{p}=q x_{0} \hat{x} e^{i \omega t}$

$$
|p|=\frac{\frac{v^{2}}{n} E_{0}}{\omega_{0}^{2}-\omega^{2}}
$$

Polorizotivipole monent/volume
and $\vec{P}=\varepsilon_{0} x \vec{E}$
it 1 electron contributes p,
then $\vec{P}=N_{\vec{P}} \quad$ where $N=\frac{\text { \#electrons }}{\text { value }}$

$$
|P|=\frac{\frac{N q^{2}}{m} E_{0}}{w_{0}^{2}-\omega^{2}}=\varepsilon_{0} \times E_{0}
$$

So, $\quad x=\frac{N q^{2}}{M \varepsilon_{0}} \quad \frac{1}{\omega_{0}^{2}-\omega^{2}}$
for $\omega^{2} \gg \omega_{0}^{2}$ plasma limit ω_{0} is afters

$$
x=-\frac{\omega_{p}^{2}}{\omega^{2}} \quad \omega_{p}=\sqrt{\frac{N_{z}^{2}}{m \varepsilon_{0}}}
$$

thus

$$
\begin{aligned}
& \text { aus } \frac{\varepsilon}{\varepsilon_{0}}=1-\frac{\omega_{p}^{2}}{\omega^{2}} \\
& \text { and } n=\sqrt{\frac{\varepsilon}{\varepsilon_{0}}}=\left[1-\frac{\omega_{p}^{2}}{\omega^{2}}\right]^{1 / 2} \quad \omega_{p}=\sqrt{\frac{N_{q}^{2}}{m \varepsilon_{0}}}
\end{aligned}
$$

b. The parse the parson emits is a wavepochet that travels to earth. As such, it travels at the group velocity, not phase velocity.

$$
\begin{aligned}
& n=\left[1-\frac{w_{p}}{w^{2}}\right]^{1 / 2} \\
& \frac{1}{V / g}=\frac{\partial K}{\partial \omega}=\frac{1}{c}\left[\frac{\sigma_{1}}{2}\left[1-\frac{\omega_{p}^{2}}{\omega^{2}}\right]^{-1 / 2}\left(\frac{2 \omega_{p}^{2}}{\omega^{3}}\right)+\left[1-\frac{\omega_{p}^{2}}{\omega^{2}}\right]^{1 / 2}\right] \\
& =\frac{1}{\delta}\left[\frac{\omega_{p}{ }^{2}}{\omega^{2}}\left[1-\frac{\omega_{p}{ }^{2}}{\omega_{2}}\right]^{-1 / 2}+\frac{\left[1-\frac{\omega_{p}}{\omega^{2}}\right]}{\left.\left[1-\frac{\omega_{p}{ }^{2}}{\omega^{2}}\right]^{1 / 2}\right]}\right. \\
& =\frac{1}{c}\left[\frac{\frac{\psi_{p}^{2}}{\psi^{2}}+1-\frac{\omega_{p}^{2}}{\omega^{2}}}{\left[1-\frac{\omega_{p}^{2}}{\omega^{2}}\right]^{1 / 2}}\right]=\frac{1}{d}\left[1-\frac{\omega_{p}^{2}}{\varepsilon^{2}}\right]^{1 / 2}
\end{aligned}
$$

so $v_{g}=c\left[1-\frac{\omega_{p}^{2}}{\omega^{2}}\right]^{1 / 2}$

$$
\begin{aligned}
& t_{1}=\frac{d}{v_{1}} \quad t_{2}=\frac{d}{v_{2}} \\
& \tau=t_{1}-t_{2}=d\left[\frac{1}{v_{y}^{\prime}}-\frac{1}{v_{y}^{2}}\right]=\frac{d}{c}\left[\left[1-\frac{w_{p}^{2}}{v_{1}^{2}}\right]^{-1 / 2}-\left[1-\frac{\omega_{p}^{2}}{\varepsilon_{2}^{2}}\right]^{-1 / 2}\right]
\end{aligned}
$$

if $\omega \gg \omega p$,

$$
\approx \frac{d}{c}\left[1+\frac{\omega_{p}^{2}}{2 \omega_{1}^{2}}-1-\frac{w_{p}^{2}}{2 \varepsilon_{2}^{2}}\right]=\frac{d w_{p}^{2}}{c \cdot 2}\left(\frac{1}{\omega_{1}^{2}}-\frac{1}{\omega_{2}^{2}}\right)
$$

Notes on phase velocity and group velocity (what I was thinking when convincing myself that me need to use vg) the pulse emitted by the pulsar is composed of several frequencies imagine \qquad built up from A fourion tronsforn in K (space).

- If the ne is no dispersion, the pulse travels at speed c, which, by the way, is still the quaup velocity since $\omega=C K$, but also happens to be the phase velocity of evan Frequency.
- Remember that the Foorien components of this pulse theoretically extend to infinity, and simply interfere destructively with other components outside the pulse to give a sam of zeno. When you calculate the phase velocity, you calcalaile the velocity of a point on one component wane. This point can travel outside the pulse and does not reflect something me can measure. Notice the phase velocity ton a wane traveling through a plasma is quester than $C ; \quad n=\left[1-\frac{\omega_{p}^{2}}{\omega^{2}}\right]^{1 / 2}$ is always less than 7 .
- t_{1} and t_{2} are the times far a packet centered at ω_{1} ar ω_{2} to reach earth. Each one travels at vg .

3, a.

This configuration has a dipole term as the lowest andes.

By inspection, $\vec{p}=-q a_{0}[\hat{x}+i \hat{y}]$
two dipoles oscillating outoxphase and \perp to each other.
If you dan 4 "see" $\vec{p}=\dot{q} a_{0}[\hat{x}+i \hat{y}]$
here is the lang way: $\rho(\vec{x})=q\left[\delta(\vec{r})-\frac{1}{r^{2} \sin \theta} \delta\left(r-a_{0}\right) \delta(\cos a) \delta(\phi-\omega z)\right]$
write $\delta(\phi-\omega t)$ as a fousion series in time
$\operatorname{Sum}_{\substack{\text { Sum } \\ \pm m}}^{\delta(d-\omega t)}=\sum_{m} A_{m} e^{-i m a t} \quad$ Multiply by $e^{i n \omega t}$ and integnot $\int_{0}^{T} d x$

$$
\begin{aligned}
& \begin{array}{l}
\int_{0}^{T} d t \delta(\phi-\omega t) e^{i n \omega t}=\sum_{m} A_{m} \underbrace{\int} \int_{0}^{T} \delta\left(t-\frac{\phi}{\omega}\right)
\end{array} \quad \Rightarrow A_{m}=\frac{e^{i(n-m) \omega t}}{2 \pi} \\
& =\frac{1}{\omega} \delta\left(t-\frac{\phi}{\omega}\right) \\
& \frac{2 \pi}{\omega} \delta_{n, M} \\
& \rho(x, t)=2 \delta\left(r^{2}\right)-\frac{2 \delta\left(r a_{0}\right) \delta(\cos \theta)}{2 \pi r^{2} \operatorname{sis} \theta} \sum_{n} e^{i m \phi} e^{-i m \omega t}
\end{aligned}
$$

we see that the lowest radiating term is $m=1$,

$$
\begin{gathered}
\rho_{1}=\frac{-q}{r^{2} \sin \theta} \delta\left(r-a_{0}\right) \delta(\cos \theta) \\
2 \pi
\end{gathered} \begin{gathered}
\left.e^{i(\phi-n \pi)}+e^{-i(\phi \theta \theta}\right]^{\imath} \quad=\frac{-q}{2 \pi r^{2} \sin \theta} \delta\left(r-a_{0}\right) \delta(\cos \theta) 2 \cos (\phi-\omega t) \\
\text { fan } m= \pm 1
\end{gathered}
$$

find the dipole moment:

$$
\vec{p}=\int \vec{x} \rho_{1} d^{3} x=\frac{-2 q}{2 \pi} \int\left[\begin{array}{c}
r \sin \theta \cos \phi \\
r \sin \theta \sin \phi \\
r \cos \theta
\end{array}\right] \frac{\delta\left(r^{\prime}-a_{0}\right) \delta\left(\cos \theta^{\prime}\right)}{r^{\prime 2} \sin \theta^{\prime}} \cos (q-a t) r^{\prime 2} d r \sin \theta^{\prime} d \theta d \phi
$$

integrators θ

$$
=\frac{-q}{\pi} a_{0} \int d \phi\left[\begin{array}{c}
\cos \phi \\
\sin \phi \\
0
\end{array}\right] \cos (\phi-\omega t)
$$

$$
\begin{aligned}
& \text { use } \int_{0}^{2 \pi} \phi \sin ^{2} \varphi=\int_{0}^{2 \pi} \varphi \cos ^{2} \varphi=\pi \\
& \int_{0}^{2 \pi} \sin \phi \cos \phi=0 \quad=-\frac{q a_{0}}{\pi}, \pi\left[\begin{array}{l}
\cos \omega t \\
\sin \omega t
\end{array}\right]=-q a_{0}[\cos \omega t \hat{x}+\sin \omega t \hat{y}] \\
& =-q a_{0} \operatorname{Re}\left[(\hat{x}+i \hat{y}) e^{-i \omega t}\right]
\end{aligned}
$$

Verifying \vec{p} above.
b. The rest is just plugging in.

$$
\begin{array}{llr}
\vec{B}= & \frac{\mu_{0} c k^{2}}{4 \pi} \frac{e^{i k r}}{r}[\hat{r} \times \vec{p}] \quad \vec{E}=-\frac{k^{2}}{4 \pi \varepsilon_{0}} \frac{e^{i k r}}{r}[\hat{r} \times(\hat{r}+\vec{p})] \\
& \hat{r} \times(\hat{x}+i \hat{y}) & \hat{x}=\hat{r} \sin \theta \cos \phi+\hat{\theta} \cos \theta \cos \phi-\hat{\phi} \sin \phi \\
& =\hat{\phi} \cos \theta(\cos \phi+i \sin \phi) & \hat{y}=\hat{r} \sin \theta \sin \phi+\hat{\theta} \cos \theta \sin \phi+\hat{\theta} \cos \phi \\
\hat{\theta}(\sin \phi-i \cos \phi) & \hat{r} \times \hat{x}=\hat{\phi} \cos \theta \cos \phi+\hat{\theta} \sin \phi \\
& =\hat{\phi} \cos \theta e^{i \phi}-i \hat{\theta} e^{i \phi} & \hat{r} \times \hat{y}=\hat{\phi} \cos \theta \sin \phi-\hat{\theta} \cos \theta
\end{array}
$$

PHYSICS 210B, Winter 2011
Final Exam (100 points in total)

- Closed books and closed notes
- Please write down the necessary intermediate steps
- Write your answers in the space provided. Continue on the back if necessary.
- A formula sheet is provided at the end of the exam.
Name:__ ID: .

Problem 1: \qquad

Problem 2: \qquad

Problem 3: \qquad

Problem 4: \qquad

Problem 5: \qquad

Total:

1. Consider a plane electromagnetic wave of wavelength λ is incident on a rectangular aperture. The width of the aperture is a and b along the X and Y -axes, respectively. Under the Fraunhofer approximation $\frac{a b}{\lambda x} \ll 1$ where x is the distance between the aperture and the detector plane, the diffraction intensity is related to the square of the Fourier transform of the aperture.
(a) Calculated the Fraunhofer diffraction pattern of the aperture. (8 points)
(b) Determine the maximum and minimum positions of the diffraction intensity. (6 points)
(c) Verify the Heisenberg Uncertainty Principle based on this system. (6 points)
2. In a collision process a particle of mass m_{2}, at rest in the laboratory, is struck by a particle of mass m_{1}, momentum $\vec{p}_{l a b}$ and total energy $E_{l a b}$. In the collision the two initial particles are transformed into two others of mass m_{3} and m_{4}. The configurations of the momentum vectors in the center-of-mass (CoM) frame and the laboratory frame are shown below.
(a) Show that the total energy W in the CoM frame has its square given by $W^{2}=m_{1}^{2}+m_{2}^{2}+2 m_{2} E_{\text {lab }} .(10$ points $)$
(b) Show that the 3-momentum in the CoM frame is $\vec{p}^{\prime}=\frac{m_{2} \vec{p}_{l a b}}{W}$. (10 points)

3. Consider a charge q and mass m that is harmonically bound (frequency ω_{0}) along x (i.e. the charge is constrained to move on the x-axis). A plane wave propagating along z, $\vec{E}=E_{0} e^{i(k z-\omega t)} \hat{X}$, is incident on the charge. Calculate the differential scattering cross-section $\frac{d \sigma}{d \Omega}$ as a function of the scattering angle θ. (20 points)
4. A thin linear antenna of length d, centered at the origin, and parallel to the z axis, is excited in such a way that the current (I) makes a full wavelength of sinusoidal oscillation at frequency ω.
(a) Find the current density, $\vec{J}(\vec{x}, t)$. (5 points)
(b) Find the vector potential of the radiation field, $\vec{A}(\vec{x}, t)$, in the far zone. (8 point)
(c) Calculate the power radiated per unit solid angle, $\frac{d P}{d \Omega}$, in the far zone. (7 point)
[Hint: if $\mathrm{d}, \lambda \ll \mathrm{r}$, then $\vec{A}(\vec{x})=\frac{\mu_{0}}{4 \pi} \frac{e^{i k r}}{r} \int \vec{J}\left(\vec{x}^{\prime}\right) e^{-i k \hat{n} \hat{x^{\prime}}} d^{3} x^{\prime} . \vec{\nabla} \times \vec{A}=i k \hat{n} \times \vec{A}$]
5. A low-energy electron has a velocity $v_{0} \ll \mathrm{c}$ at infinity. The velocity \vec{v}_{0} is directed towards a fixed, repulsive Coulomb field, the potential energy for which is given by $U(r)=\frac{Z e^{2}}{r}$. The electron is decelerated until it comes to rest and then is accelerated again in a direction opposite to the original direction of motion. Show that when the electron has again reached an infinite distance from the Coulomb scattering center, the kinetic energy of the electron is about $\frac{1}{2} m v^{2}=\frac{1}{2} m v_{0}^{2}\left(1-\frac{16 v_{0}^{3}}{45 Z c^{3}}\right)$ where m is the electron mass and the term depending on v_{0}^{5} represents the energy radiated away during the deceleration and acceleration processes. [Hint: assume that the radiation reaction does not affect the dynamics appreciably. Also, if you can write down all the main steps, you will get most of the points. The detailed calculation is less important.] (20 points)

Formula Sheet for the Final Exam
You may use any of the following equations without derivation.

$$
\begin{aligned}
& \vec{E}=\vec{E}_{0} e^{-i(\omega t-\vec{k} \cdot \vec{r})} \quad \vec{B}=\vec{B}_{0} e^{-i(\omega t-\vec{k} \cdot \vec{r})} \quad \vec{B}=\sqrt{\mu \varepsilon} \hat{k} \times \vec{E} \\
& v=\frac{\omega}{k}=\frac{1}{\sqrt{\varepsilon \mu}} \quad n=\frac{\sqrt{\mu \varepsilon}}{\sqrt{\mu_{0} \varepsilon_{0}}} \quad k=\frac{2 \pi}{\lambda} \quad \theta_{c}=\sin ^{-1}\left(\frac{n^{\prime}}{n}\right) \\
& \text { TE waves: } \vec{\nabla}_{t} B_{z}=-\frac{i k_{c}^{2}}{k_{g}} \vec{B}_{t} \quad \vec{B}_{t}=\frac{k_{g}}{\omega}\left(\hat{z} \times \vec{E}_{t}\right) \quad k_{0}^{2}=k_{c}^{2}+k_{g}^{2} \\
& \text { TM waves: } \vec{\nabla}_{t} E_{z}=-\frac{i k_{c}^{2}}{k_{g}} \vec{E}_{t} \quad \vec{E}_{t}=-\frac{k_{g}}{\mu \varepsilon \omega}\left(\hat{z} \times \vec{B}_{t}\right) \\
& \vec{p}=\int \vec{x}^{\prime} \rho\left(\vec{x}^{\prime}\right) d^{3} x^{\prime} \quad \vec{A}_{E D}(\vec{x})=-\frac{i \mu_{0} \omega \vec{p}}{4 \pi} \frac{e^{i k r}}{r} \quad \vec{B}_{E D}=\frac{\mu_{0} c k^{2}}{4 \pi} \frac{e^{i k r}}{r} \hat{n} \times \vec{p} \\
& \vec{E}_{E D}=-\frac{k^{2}}{4 \pi \varepsilon_{0}} \frac{e^{i k r}}{r}[\hat{n} \times(\hat{n} \times \vec{p})]=Z_{0} \vec{H}_{E D} \times \hat{n} \quad Z_{0}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} \quad \frac{d P}{d \Omega}=\frac{c^{2} k^{4} Z_{0}}{32 \pi^{2}}|\hat{n} \times \vec{p}|^{2} \\
& \vec{m}=\frac{1}{2} \int\left(\vec{x}^{\prime} \times \vec{J}\right) d^{3} X^{\prime} \quad \vec{B}_{M D}=\frac{\mu_{0} k^{2}}{4 \pi} \frac{e^{i k r}}{r}(\hat{n} \times \vec{m}) \times \hat{n} \quad \vec{E}_{M D}=\frac{Z_{0} k^{2}}{4 \pi} \frac{e^{i k r}}{r} \hat{n} \times \vec{m} \quad \frac{d P}{d \Omega}=\frac{k^{4} Z_{0}}{32 \pi^{2}}|\hat{n} \times \vec{m}|^{2} \\
& \frac{d \sigma}{d \Omega}=\frac{k^{4} a^{6}}{2}\left|\frac{\varepsilon_{r}-1}{\varepsilon_{r}+2}\right|^{2}\left(1+\cos ^{2} \theta\right) \quad \frac{d \sigma}{d \Omega}=k^{4} a^{6}\left[\frac{5}{8}\left(1+\cos ^{2} \theta\right)-\cos \theta\right] \\
& \frac{d \sigma}{d \Omega}=\frac{k^{4} a^{6}}{2}\left|\frac{\varepsilon_{r}-1}{\varepsilon_{r}+2}\right|^{2}\left(1+\cos ^{2} \theta\right)|S(\vec{q})|^{2} \quad S(\vec{q})=\sum_{i} e^{-i \vec{q} \cdot \bar{x}_{i}} \\
& \frac{d \sigma}{d \Omega}=\frac{1+\cos ^{2} \theta}{2} r_{0}^{2} \quad \sigma=\frac{8 \pi}{3} r_{0}^{2} \\
& \left(\begin{array}{l}
x_{0}^{\prime} \\
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\gamma & -\beta \gamma & 0 & 0 \\
-\beta \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \\
& u_{\|}^{\prime}=\frac{u_{\|}-v}{1-\vec{v} \cdot \vec{u} / c^{2}} \quad \vec{u}_{\perp}^{\prime}=\frac{\vec{u}_{\perp}}{\gamma\left(1-\vec{v} \cdot \vec{u} / c^{2}\right)} \\
& \vec{p}=\gamma m_{0} \vec{u} \quad E=\gamma m_{0} c^{2} \quad p^{\mu}=(E / c, \vec{p}) \quad E=\sqrt{m_{0}^{2} c^{4}+c^{2} p^{2}} \\
& \partial_{\mu} G^{\mu \nu}=\frac{4 \pi}{c} J^{\nu} \quad \partial_{\mu} \wp^{\mu \nu}=0 \quad F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu} \\
& F^{\mu \nu}=\left(\begin{array}{ccrr}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & -B_{z} & B_{y} \\
E_{y} & B_{z} & 0 & -B_{x} \\
E_{z} & -B_{y} & B_{x} & 0
\end{array}\right) \quad \wp^{\mu \nu}=\left(\begin{array}{cccc}
0 & -B_{x} & -B_{y} & -B_{z} \\
B_{x} & 0 & E_{z} & -E_{y} \\
B_{y} & -E_{z} & 0 & E_{x} \\
B_{z} & E_{y} & -E_{x} & 0
\end{array}\right) \\
& \frac{d P}{d \Omega}=\frac{q^{2}}{4 \pi c^{3}}|\dot{\vec{v}}|^{2} \sin ^{2} \theta \quad P=\frac{2}{3} \frac{q^{2}}{c^{3}}|\dot{\vec{v}}|^{2}
\end{aligned}
$$

$$
\begin{gathered}
\frac{d P\left(t^{\prime}\right)}{d \Omega}=\frac{q^{2} \dot{v}^{2}}{4 \pi c^{3}} \frac{\sin ^{2} \theta}{(1-\beta \cos \theta)^{5}} \quad P=\frac{2}{3} \frac{q^{2}}{m^{2} c^{3}}\left(\frac{d p}{d t}\right)^{2} \\
\frac{d P}{d \Omega}=\frac{q^{2}}{4 \pi c^{3}} \frac{\dot{v}^{2}}{(1-\beta \cos \theta)^{3}}\left[1-\frac{\sin ^{2} \theta \cos ^{2} \phi}{\gamma^{2}(1-\beta \cos \theta)^{2}}\right] \quad P=\frac{2}{3} \frac{q^{2} c}{\rho^{2}} \beta^{4} \gamma^{4} \\
\Phi(\vec{x}, t)=\left[\frac{q}{(1-\hat{n} \cdot \vec{\beta}) R}\right]_{\text {ret }} \quad \vec{A}(\vec{x}, t)=\left[\frac{q \vec{\beta}}{(1-\hat{n} \cdot \vec{\beta}) R}\right]_{\text {ret }} t^{\prime}=t-\frac{R}{c}
\end{gathered}
$$

Fresnel diffraction: $\psi(u, v)=\frac{e^{i k z}}{i \lambda z} e^{i \frac{k}{2 z}\left(u^{2}+v^{2}\right)^{\infty}} \int_{-\alpha}^{\infty}\left[\psi(x, y) e^{i \frac{k}{2 z}\left(x^{2}+y^{2}\right)}\right] e^{-i \frac{2 \pi}{\lambda z}(u x+v)} d x d y$
Fraunhofer diffraction: $\psi(u, v)=\frac{e^{i k z}}{i \lambda z} e^{i \frac{k}{2 z}\left(u^{2}+v^{2}\right)} \int_{-\infty}^{\infty} \psi(x, y) e^{-i \frac{2 \pi}{\lambda z}(u x+v)} d x d y$
1.

$$
\psi(a, v)=\frac{e^{i k z}}{i \lambda z} e^{i \frac{k}{2 z}\left(u^{2}+v^{2}\right)} \int_{-\infty}^{\infty} \psi(x, y) e^{-i \frac{2 \pi}{\lambda z}(u x+v y)} d x d y
$$

$$
\psi(x, y)=1 \quad \text { for }-\frac{a}{2}<x<\frac{a}{2} \text { and }-\frac{b}{2}<y<b / 2
$$

b. max along:

$$
\begin{aligned}
& \frac{\partial I}{\partial x}=I_{0} 2\left(\frac{\sin u_{a}}{u_{a}}\right)\left(\frac{a_{a} \cos u_{a}-\sin u_{a}}{u_{a}^{2}}\right)\left(\begin{array}{r}
\left.\frac{\pi a}{\lambda 2}\right)\left(\frac{\sin u_{b}}{u_{b}}\right)^{2}=0 \\
\sin u_{a}\left(u_{a} \cos u_{a}-\sin u_{a}\right)=0 \quad \\
\quad \Rightarrow \sin u_{a}=0 \text { minima } I=0 \\
\\
\text { or tan } u_{a}=u_{a} \quad I \neq 0
\end{array}\right.
\end{aligned}
$$

Minima at $\frac{k a u}{2 z}=n \pi \quad u=\frac{\lambda z}{a}$
max at $\tan \left(\frac{\pi a n}{\lambda z}\right)=\frac{\tan }{\lambda z}$
C. $\Delta u \sim a \quad \Delta v \sim b$ since try sabina take e $\frac{1}{2}$ angolan spread to be angle firn center to first min.
\rightarrow spread in $p_{x} \quad \Delta p_{x}=p_{\sin }=\frac{h}{\lambda} \cdot \tan \theta=\frac{h}{\lambda} \frac{1}{a}=\frac{h}{a}$ $\tan \theta=1 / a$

$$
\Delta p * \Delta x=a \frac{h}{a}=h
$$

$$
\begin{aligned}
& \text { a. } \\
& \int \psi e^{-i \frac{\pi \pi}{\lambda 2}(u x+v)} d a d y=\int_{-a / 2}^{a / 2} e^{-i \frac{k}{2} x u} d x \int_{-b / 2}^{b / 2} e^{-i k / 2(v y)} d y \\
& \begin{array}{l}
\left.\frac{e^{-i \frac{k}{2} \times u}}{-i \frac{k}{2} u}\right|_{-q / 2} ^{0 / 2}=-\frac{1}{-i \frac{k}{2} u} \underbrace{\left(e^{-i \frac{k}{2} u \frac{a}{2}}-e^{+i \frac{k}{2} u \frac{a}{2}}\right)} \\
\left.\frac{k a u}{22}\right)\left(-2 i \sin \left(\frac{k b y}{22}\right)\right)
\end{array} \\
& \psi(u, v)=\frac{e^{i \pi z}}{i \lambda z} e^{i \frac{k}{2}()} \frac{4}{\left(\frac{k^{2}}{2^{2}} u v\right)} \sin \left(\frac{k a u}{2 z}\right) \sin \left(\frac{k b w}{22}\right) \\
& I=|q|^{2}=I_{0}\left(\frac{\sin u_{a}}{u_{a}}\right)^{2}\left(\frac{\sin u_{b}}{u_{b}}\right)^{2} \quad u_{a}=\frac{k a u}{2 z} \quad u_{b}=\frac{k b v}{22}
\end{aligned}
$$

2. Lab

a. com

$$
\begin{aligned}
& \stackrel{p_{1}^{\prime}}{m_{1}} \stackrel{-p_{m}^{\prime}}{\stackrel{-m_{2}^{\prime}}{ }} \\
& \underset{\substack{\text { eos } \\
\text { time } \\
\text { indore }}}{\text { los }} p^{\mu}=\left[\begin{array}{c}
\frac{E_{106}}{c}+m c^{2} \\
p_{\text {pins }} \\
0
\end{array}\right] \\
& \text { com } \\
& p^{\mu^{\prime}}=\left[\begin{array}{c}
w \\
c \\
0 \\
0 \\
0
\end{array}\right] \\
& P^{M} P_{\mu}=P^{M} P_{\mu}^{\prime}: \quad\left(E_{a b}+m_{2} c^{2}\right)^{2}-P_{l a b}^{2}=\frac{w^{2}}{c^{2}} \\
& E_{a b}^{2}-p_{1 a b}^{2} c^{2}=m_{1}^{2} c^{4} \\
& \text { for Prayer }{ }^{2} \\
& \text { flab }+m_{2}^{2} c^{4}+2 E_{a b} m_{2} c^{2}+m_{1}^{2} c^{4}-E_{l a d}^{x}=w^{2} \\
& w^{2}=m_{2}^{2} c^{4}+m_{1}^{2} c^{4}+2 E_{1 a g} m_{2} c^{2}
\end{aligned}
$$

b, Lab

$$
p_{1}^{M}=\left[\begin{array}{c}
\frac{E_{1 a b}}{c} \\
P_{g a 0}
\end{array}\right] \quad p_{2}^{M}=\left[\begin{array}{c}
m_{2} c \\
0 \\
0
\end{array}\right] \quad\left(p_{1}^{M}, p_{2 \mu}\right)^{2}=\left(m_{2} E_{1 a b}\right)^{2}=m_{2}^{2}\left(m_{1}^{2} c^{4}+p_{1 a b}^{2} c^{2}\right)
$$

com

$$
\begin{aligned}
& P_{1}^{\prime M}=\left[\begin{array}{c}
\frac{E_{1}^{\prime}}{c} \\
p^{\prime}
\end{array}\right] \quad P_{2}^{\prime \mu}=\left[\begin{array}{c}
E_{2}^{\prime} / c \\
-p^{\prime}
\end{array}\right] \\
& E_{1,2}^{2}=m_{1,2}^{2} c^{4}+p^{2} c^{2} \\
& \left(-P_{1}^{\prime M} P_{2 \mu}^{\prime} \mu\right)^{2}=\frac{1}{c^{4}}\left(E_{1}^{\prime} E_{2}^{\prime}+P^{\prime 2}\right)^{2}=\frac{1}{c^{4}}\left(E_{1}^{\prime 2} E_{2}^{\prime 2}+p^{\prime y^{\prime \prime}}+2 E_{1}^{\prime} E_{2}^{\prime} P^{\prime 2 c^{2}}\right) \\
& =\frac{1}{d^{4}}\left[\left(m_{1}^{2} c^{4}+p^{2} c^{2}\right)\left(m_{2}^{2} c^{4}+p^{2} c^{2}\right)+\begin{array}{c}
\text { rubin } \\
\left.m^{\prime} c^{4}+2 E_{1} E_{2}^{1} p^{\prime 2} c^{2}\right]
\end{array}\right. \\
& m_{1}^{2} m_{2}^{2} e^{8}+\underbrace{\left.E_{1}^{2}\right]}_{p^{\prime 2} c^{\prime 2}\left[c^{2}\left(m_{2}^{2} c^{4}+m_{1}^{2} c^{4}\right)+2 p^{\prime 4} c^{4}+2 E_{1}^{\prime 2} E_{1}^{2} p^{\prime 2} p^{\prime 2} c^{2}+m_{2}^{2} c^{4}+m_{1}^{2} c^{4}+2 E_{1}^{\prime} E_{2}^{\prime}\right]} \\
& \left(E_{1}+E_{2}\right)^{2}
\end{aligned}
$$

$$
=\frac{1}{c^{4}}\left[m_{1}^{2} m_{2}^{2} c^{8}+p^{\prime 2} c^{2} w^{2}\right]
$$

set

$$
\begin{aligned}
\vec{P}_{1}^{\prime M} P_{2 \mu}^{\prime} & =p_{1}^{M} P_{2 \mu} \\
m_{1}^{2} m_{2}^{2} c^{4}+p^{\prime 2} \frac{w^{2}}{c^{2}} & =m_{1}^{2} m_{2}^{2} c^{4}+p_{\text {las }}^{2} c^{2} \\
\Rightarrow p^{1^{2}} & =\frac{p_{\text {lag }}^{2} c^{4}}{w^{2}} \quad \text { since } \vec{p}_{\text {lad }} \text { and } \vec{p}^{\prime} \text { are parallel, } \\
\overrightarrow{p^{\prime}} & =\frac{\vec{p}_{\text {ab g }} c^{2}}{w}
\end{aligned}
$$

3.

$$
\begin{aligned}
& \text { set } z=0 \\
& -\omega_{0}^{2} x+\frac{q}{M} E_{x}=\ddot{x} \\
& x=x_{0} e^{-i \omega t} \\
& -\omega_{0}^{2} x_{0} e^{-\omega_{2}^{2}}+\frac{q}{M} E_{0} e^{-i \omega t}=-x_{0} \omega^{2} e^{i \omega t} \\
& x_{0}\left(\omega^{2}-\omega_{0}^{2}\right)+\frac{q}{m} \varepsilon_{0}=0 \quad \Rightarrow \quad x_{0}=\frac{\frac{2}{H} E_{0}}{\omega^{2}-\omega_{0}^{2}}
\end{aligned}
$$

dime $\vec{p}=q^{\frac{1}{x}} \quad|p|=q x_{0} \quad$ oscillating at ω

$$
\begin{aligned}
& \frac{d p}{d r}=\frac{\left.c^{2} \pi^{4} z_{0}|p|\right|^{2}}{32 \pi} \times \frac{\left.\sqrt{x}\right|^{2}}{} \text { dipab is olloge } \hat{x}
\end{aligned}
$$

$\frac{20}{\varepsilon c^{3}}$
$\sqrt{\frac{\pi}{\varepsilon}} \frac{\mu \in \sqrt{x s}}{\varepsilon}$

$$
\begin{aligned}
& \frac{d p}{d r}=\frac{\left.c^{2} \pi^{4} z_{0}|p|\right|^{2}}{32 \pi} \times \frac{\left.\sqrt{x}\right|^{2}}{} \text { dipab is olloge } \hat{x}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{x}{\psi \varepsilon_{0} \alpha_{0}^{2}} \frac{c^{y} k^{n} z_{0}}{3 / 2 \pi} \frac{q^{2}\left(\frac{q}{m}\right)^{2} \xi_{0}^{\%}}{\left(\omega^{2}-\omega_{0}^{2}\right)}\left(1-\sin \theta \cos ^{2} \theta\right) \\
& =\frac{z_{0} \omega^{4}}{\varepsilon_{0} c^{3} 16 \pi} \frac{q^{4}}{m^{2}\left(\omega^{2}-\omega^{2}\right)} \quad\left(1-\sin ^{2} \theta \cos ^{2} \theta\right) \\
& \frac{d \sigma}{d-}=\frac{\mu^{2} q^{4} \omega^{4}}{16 \pi \mu^{2}\left(\omega^{2}-\omega_{0}^{2}\right)}\left(1-\sin ^{2} \theta \cos ^{2} \theta\right)
\end{aligned}
$$

$k=\frac{2 \pi}{d}$
4. a. $\vec{J}(x, t)=I_{0} \delta(x) \delta(y) \sin (k z) e^{-i \omega t} \hat{z}^{n}$ for $-\frac{d}{2}<z<\frac{d}{2}$

$$
\begin{aligned}
& \dot{A}(x)=\frac{\mu_{0}}{4 \pi} \frac{e^{i k r}}{r} I_{0} \frac{1}{2} \int \delta(x) \delta(y) \sin \left(k z^{\prime}\right) e^{-i k \hat{n} \cdot \vec{x}^{\prime}} d^{3} x^{\prime} \quad \hat{n} \cdot \vec{x}^{\prime}=z^{\prime} \cos \theta \\
& \int \sin k z^{\prime} e^{-i k z^{\prime} \cos \theta} d z^{\prime} \quad \text { kx } \phi=k z^{\prime} \\
& \frac{1}{k} \iint_{-\pi}^{\pi} \sin \phi e^{-i \phi} \cos \theta d z^{\prime}
\end{aligned}
$$

$$
\vec{A}(x)=-i \frac{r_{0} \tau_{0}}{2 \pi} \frac{e^{i \pi r}}{k r} \frac{\sin (\pi \cos \theta)}{\sin ^{2} \theta} \hat{2}
$$

C. Let $\vec{A}=A \hat{z}$

$$
B=\nabla \times \vec{A} \Rightarrow i k \hat{n} \times(A \hat{i})=i k A \hat{n} \times \hat{z}
$$

$$
\begin{aligned}
& I=\int_{-\pi}^{*} \sin \phi_{d \nu} e^{-\alpha \phi \phi} d \phi \text { by peots } \\
& \left.=-e^{-\alpha \phi} \cos \phi\right)_{-\pi}^{\pi}-\int(-\cos \phi) e^{-\alpha}(-\alpha) d \phi \\
& =\left(e^{-a \pi}-e^{+a \pi}\right)_{b_{y} p a t s}^{-\pi}-\alpha \int^{-2} \cos \phi e^{a \phi} \\
& =-2 \sin \text { iaian by pats asioni } \\
& -a\left[\left.e^{-a \phi} \phi \sin _{j_{0} \phi}^{-\pi}\right|_{-\pi} ^{\pi}-\int \sin \phi e^{-a \phi}(-a) / \phi\right. \\
& =-2 \sin a \pi-a^{2} I \\
& \Rightarrow \quad I\left(1+a^{2}\right)=-2 \sinh a \pi \\
& I=\frac{-2}{\left(1+a^{2}\right)} \sinh a \pi \\
& \alpha \rightarrow \text { ia } \\
& =\frac{-2 i}{\left(1-a^{2}\right)} \sin (a \pi)
\end{aligned}
$$

Fran mavaue $D \times D=\frac{1}{c^{2}} \frac{\partial E}{\partial e}=-\frac{i \omega}{c^{2}} E \Rightarrow E=i \frac{e}{K} \nabla \times B$

$$
\begin{aligned}
& E=i_{\hat{K}}^{c}(i k \hat{n} \times \vec{B})=-c \hat{n} \times B \\
& \left.\frac{d P}{d \Omega}=r^{2}\langle S \cdot \hat{A}\rangle=\frac{1}{2} r^{2} \hat{n} \cdot\left(E \times H^{*}\right)=\frac{1}{2} r^{2} \hat{n} \cdot\left(-c(\hat{n} \times \hat{B}) \times \frac{1}{\mu} \vec{B}\right)\right) \\
& =\frac{1}{2} r^{2} \frac{c}{\mu} \hat{n} \cdot(\vec{B} \times(n+\vec{B}), \\
& \hat{a} \cdot\left(|B|^{2} \hat{n}-(B \cdot n) \vec{B}\right)=|B|^{2} \\
& =\frac{1}{2} \frac{c}{\mu} r^{2} k^{2}\left|A^{2}\right| n+\left.2\right|^{2} \sin ^{2} \theta \\
& =\frac{1}{2} \frac{c}{\mu} \pi^{2} \frac{\mu^{2} I_{0}^{2}}{4 \pi^{2}} \frac{1}{\pi^{2}} \frac{\sin ^{2}(\pi \cos \theta)}{\sin ^{4} \theta} \sin ^{2} \theta=\left\lvert\, \frac{I_{0}^{2}}{8 \pi^{2}} \sqrt{\frac{\pi}{8}} \frac{\sin ^{2}(\pi \cos \theta)}{\sin ^{2} \theta}\right.
\end{aligned}
$$

5

$$
\begin{aligned}
& 0 \xrightarrow{\xi^{m}} \\
& u(r)=\frac{z e^{2}}{r} \quad \frac{d u}{d r}=-\frac{z e^{2}}{r^{2}} \\
& =-\frac{u^{2}}{z e^{2}} \\
& p=\frac{2}{3} \frac{e^{2}}{d^{3}}|\vec{v}|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { cons of Fracy } \\
& \frac{1}{2} m v_{0}^{2}=\frac{1}{2} m v^{2}+u(r) \\
& u(r)=\frac{1}{2} m\left(v^{2}-v^{2}\right) \\
& \begin{array}{c}
F=m \dot{v}=-\frac{\partial u}{\partial r}=\frac{u^{2}}{2 e^{2}} \\
\frac{1}{m} z e^{2}\left(\frac{1}{2} n\right)^{2} \int\left(v_{0}^{2}-v^{2}\right)^{2} d v
\end{array} \\
& -2 e^{2} \int_{\hat{L}^{2}}^{0} \text { radiatis going intant } \\
& \text { (2e) } \\
& =\frac{m}{4 z e^{2}} \int_{v_{0}}^{0}\left(v_{0}^{4}+v^{4}-2 v_{0}^{2} v^{2}\right) d v \\
& V_{0}^{4}\left(-v_{0}\right)+\frac{1}{5}\left(-v_{0}^{5}\right)-2 v_{0}^{2} \frac{1}{3}\left(-v_{0}^{3}\right) \\
& -V_{0}^{5}\left(1+\frac{1}{5}-\frac{2}{3}\right)=-\frac{8}{15} V_{0}^{5} \\
& =\frac{-2 \mathrm{M}}{15 z e^{2}} \quad v_{0}^{5} \\
& =-\frac{8}{45} \frac{m}{c^{3}} v_{0}^{5}
\end{aligned}
$$

So its energy when it goes bock to ∞ is

$$
\frac{1}{2} m v_{0}^{2}-\frac{8}{45} \frac{m}{2 c^{3}} v_{0}^{5}=\frac{1}{2} m v_{0}^{2}\left[1-\frac{16 v_{0}^{3}}{452 c^{3}}\right]
$$

PHYSICS 210B, Winter 2011

Midterm Exam (100 points in total)

- Closed books and closed notes
- Please write down the necessary intermediate steps
- Write your answers in the space provided. Continue on the back if necessary.
- A formula sheet is provided at the end of the exam.

Name:
ID: \qquad .

Problem 1: \qquad

Problem 2: \qquad

Problem 3: \qquad

Total:

1. (32 points)

A plane polarized electromagnetic wave of frequency ω in free space is incident with angle i on the flat surface of an excellent conductor ($\mu=\mu_{0}, \epsilon=\epsilon_{0}$ and $\sigma \gg \omega \epsilon_{0}$) which fills the region $z>0$.

Consider only linear polarization perpendicular to the plane of incidence.
a) If the incident wave is given by $\vec{E}=\vec{E}_{i} e^{i(\vec{k} \cdot \vec{x}-\omega t)}$, show that (in the limit $\sigma \gg \omega \epsilon_{0}$) the magnitude of the electric field inside the conductor is

$$
E_{c}=E_{i} \gamma \cos i e^{-z / \delta} e^{i(k x \sin i+z / \delta-\omega t)}
$$

where

$$
\delta=\sqrt{\frac{2}{\omega \mu_{0} \sigma}} \quad \text { and } \quad \gamma=(1-i) \sqrt{\frac{2 \epsilon_{0} \omega}{\sigma}}
$$

The z direction is perpendicular to the flat surface of the conductor, while the x direction is parallel to it.
b) Show that the time averaged power per unit area flowing into the conductor is given by $S^{\perp}=\epsilon_{0}\left|E_{i}\right|^{2} \omega \delta \cos ^{2} i$.

You may use the Fresnel equation for E perpendicular to the plane of incidence, $\frac{E_{c}^{\prime}}{E_{i}}=\frac{2}{\left(1+\frac{\eta_{i} \cos i}{\eta_{c} \cos r}\right)}$ where η is the impedance of the material and r is the refracted angle.
2. An electric dipole oscillates with a frequency ω and amplitude P_{0}. It is placed at a distance $x=a / 2$ from an infinite perfectly conducting grounded plane and the dipole is parallel to the plane. Find the electromagnetic field and the time-averaged angular distribution of the emitted radiation for distances $r \gg \lambda \gg a$. (32 points)
3. Propagation of a TE wave between two perfectly conducting plates. Assume the wave reflects perfectly off each conducting surface, a is the distance between two plates, k is the free-space wave number of the incident plane wave, and θ is the incident angle (the angle between the incident wave and the normal direction to the conducting plate).
(a) Derive the expressions for the cut-off frequency and the wave number along the horizontal (i.e. propagation) and the vertical direction. (18 points)
(b) Determine the phase velocity and group velocity of the wave propagating along the plates. (18 points)

1. (32 points)

A plane polarized electromagnetic wave of frequency ω in free space is incident with angle i on the flat surface of an excellent conductor ($\mu=\mu_{0}, \epsilon=\epsilon_{0}$ and $\sigma \gg \omega \epsilon_{0}$) which fills the region $z>0$.

Consider only linear polarization perpendicular to the plane of incidence.
a) If the incident wave is given by $\vec{E}=\vec{E}_{i} e^{i(\vec{k} \cdot \vec{x}-\omega t)}$, show that (in the limit $\sigma \gg \omega \epsilon_{0}$) the magnitude of the electric field inside the conductor is

$$
E_{c}=E_{i} \gamma \cos i e^{-z / \delta} e^{i(k x \sin i+z / \delta-\omega t)}
$$

where

$$
\delta=\sqrt{\frac{2}{\omega \mu_{0} \sigma}} \quad \text { and } \quad \gamma=(1-i) \sqrt{\frac{2 \epsilon_{0} \omega}{\sigma}}
$$

The z direction is perpendicular to the flat surface of the conductor, while the x direction is parallel to it.
b) Show that the time averaged power per unit area flowing into the conductor is given by $S^{\perp}=\epsilon_{0}\left|E_{i}\right|^{2} \omega \delta \cos ^{2} i$.
a.

$$
\begin{array}{ll}
\vec{E}_{i}=\hat{y} E_{0} e^{i\left(\overrightarrow{k_{i}} \cdot \vec{r}\right)} & \vec{K}_{i}=k_{i}\left[\begin{array}{c}
\sin i \\
0 \\
\cos i
\end{array}\right]
\end{array} \hat{k}_{i} \times \hat{y}=\left[\begin{array}{c}
-\cos i \\
0 \\
\sin i
\end{array}\right] \quad \eta_{1}=\sqrt{\mu_{i}}
$$

$$
\begin{aligned}
& E_{11} \text { cont: } E_{0}+E_{r}=E_{c} \\
& H_{11} \text { cont: } \frac{1}{\eta_{1}}\left(-E_{0} \cos i+E_{r} \cos i\right)=\frac{E_{c}}{\eta_{2}}(-\cos r) \\
& E_{0}-E_{r}=\frac{\eta_{1}}{\eta_{2}} E_{c} \frac{\cos r}{\cos i}
\end{aligned} \quad \begin{aligned}
& 2 E_{0}=F_{c}\left(1+\frac{\left.\eta_{1} \operatorname{los} \frac{\cos r}{\cos 2}\right)}{E_{c}=\frac{2 E_{0}}{\left(1+\frac{\eta_{1}}{\eta_{2}} \frac{\cos r}{\cos i}\right)}} \begin{array}{l}
\frac{\eta_{1}}{\eta_{2}}=\frac{\sqrt{\mu / \varepsilon_{0}}}{\sqrt{\mu_{0} / \varepsilon_{c}}}=\sqrt{\frac{\varepsilon_{c}}{\varepsilon_{0}}} \\
\end{array} \quad \begin{array}{l}
\varepsilon_{c}=\varepsilon_{0}+i \sigma / \omega \\
\text { so } \frac{\eta_{1}}{\eta_{2}}=\sqrt{1+i \sigma / \omega \varepsilon_{0}}
\end{array}\right.
\end{aligned}
$$

$1+i \sigma / \omega \varepsilon_{0}=\sqrt{1+\left(\sigma / v \varepsilon_{0}\right)^{2}} e^{i \phi}$ where $\phi=\tan ^{-1} \sigma / \omega \varepsilon_{0}$
we have $0 \gg \omega \varepsilon_{0}$ so $q=\tan ^{-1} \infty=\frac{\pi}{2}$

$$
\approx \frac{\sigma}{\omega \varepsilon_{0}} e^{i \pi / 2}
$$

$$
\sqrt{1+(\% / w)^{2}}=\sigma / w_{\varepsilon}
$$

So $\frac{\eta_{1}}{\eta_{2}}=\sqrt{\frac{0}{\omega \varepsilon_{0}}} e^{i \pi / 4}$

Now examine $\frac{\cos r}{\cos i}$: from snell's Law $n \sin i=n_{c} \sin r$

$$
\begin{aligned}
& \cos r=\sqrt{1-\sin ^{2} r} \\
&=\sqrt{1-\left(\frac{\eta_{2}}{\eta_{1}}\right)^{2} \sin ^{2} i}=\sqrt{\eta_{c}} \sin i=\sqrt{\frac{\varepsilon_{c}}{\varepsilon_{c}}} \sin i \\
&=\frac{\eta_{2}}{\eta_{1}} \sin i
\end{aligned}
$$

$$
\text { So, } E_{C}=\frac{2 E_{0}}{1+\sqrt{\frac{\sigma}{\omega \varepsilon_{0}}} e^{i \pi / 4} \frac{1}{\cos i}}=\frac{2 E_{0} \cos i}{\cos i+\sqrt{\frac{\sigma}{\omega \varepsilon_{0}}} e^{i \pi / 4}}=2 E_{0} \cos i \sqrt{\frac{\omega \varepsilon_{0}}{\sigma}} e^{-i \pi / 4}
$$

$$
\text { small } \sum_{\text {big }}^{7} \quad \frac{1}{\sqrt{2}}(1-i)
$$

$$
E_{c}=\underbrace{\sqrt{\frac{2 \omega \varepsilon_{0}}{\sigma}}(1-i)}_{\gamma} F_{0} \cos i
$$

$$
\begin{aligned}
&=\omega \sqrt{\mu \varepsilon_{0}} \sqrt{\frac{\sigma}{\omega \varepsilon_{0}}} e^{i \pi / 4}\left(\sqrt{\frac{\omega \varepsilon_{0}}{\sigma}} e^{-i \pi / 4} \sin i x+z\right) \\
&=\underbrace{\omega \sqrt{\mu_{0} \varepsilon_{g}}}_{\omega / c=k} \sin i x+\underbrace{\frac{\sqrt{\mu 0 \sigma \omega}}{2}}(1+i) z \\
& e^{i\left(\vec{K}_{c} \cdot \vec{r}\right)}=e^{-z / \delta} e^{i(k \sin i x+z / \delta)}
\end{aligned}
$$

So finally:

$$
\vec{E}_{c}=\hat{y} E_{0} \gamma \cos i e^{-2 / \delta} e^{i(k \sin i+z / \delta)}
$$

b. $\langle S\rangle=\frac{1}{2} k\left(E \times H^{k}\right)$

At the surtace of canducten, there E_{c} and the at $z=0$

$$
\begin{aligned}
& \text { pomen inuards is } \\
& \hat{z} \cdot\langle s\rangle=\frac{1}{2} \operatorname{Re}\left[E_{c} E_{c}^{*} \frac{\eta_{c}^{x}}{\eta^{-2 / \delta}} e^{-\frac{1}{2} / \delta} e^{-i(k x \sin i+2 / \delta)} e^{+i(k+\sin i+2 / \delta)}\right] \\
& \hat{z} \cdot(\underbrace{\hat{y}+\left(\hat{r}_{c}+\hat{y}\right)}) \\
& \hat{z} \cdot\left[\begin{array}{c}
\sin r \\
\cos r
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{Re}\left[\frac{2 \omega \varepsilon_{0}}{\sigma} \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} \sqrt{\frac{\sigma}{\omega \xi_{0}}} \frac{1}{\sqrt{2}}(1-i) F_{0}^{2} \cos ^{2} i\right] \\
& =\varepsilon_{0} E_{0}^{2} \omega \cos ^{2} i \sqrt{\frac{2}{\sigma p_{0} \omega}}=\varepsilon_{0} E_{0}^{2} \omega \delta \cos ^{2} i
\end{aligned}
$$

2. An electric dipole oscillates with a frequency ω and amplitude P_{0}. It is placed at a distance $x=a / 2$ from an infinite perfectly conducting plane and the dipole is parallel to the plane. Find the electromagnetic field and the time-averaged angular distribution of the emitted radiation for distances r $\gg \lambda \gg$ a. (32 points)

$$
\text { or } p_{2}=-p_{1}
$$

$$
{ }^{1}
$$

Plug Geometry into the reciter potential

$$
\begin{gathered}
A_{E_{D}(\vec{x})=}=\frac{i \mu_{0} \omega \frac{\vec{p}}{4 \pi} \frac{e^{i k r}}{r}}{\vec{A}_{\text {TOT }}=\frac{-i \mu_{0}}{4 \pi} \omega P_{0}\left[\frac{e^{i k r_{2}}}{r_{2}}-\frac{e^{i k r_{1}}}{r_{1}}\right] \hat{z}} \begin{array}{c}
\text { Minus bic. dipoles } \\
\text { point in opposite } \\
\text { directichs }
\end{array} \\
\frac{1}{r_{1}}=\frac{1}{r_{2}} \approx \frac{1}{r}
\end{gathered}
$$

but need angular dependence in $e^{i k r}$

$$
\begin{aligned}
\vec{A}_{\text {Tot }}= & \frac{-i \mu_{0}}{4 \pi} \omega P_{0} \frac{e^{i k r}}{r}[\underbrace{-i k \frac{a}{2} \sin \theta \cos \theta}-e^{i k \frac{a}{2} \sin \theta \cos \phi}] z^{-i} \\
& \left.-\frac{-\mu_{0}}{2 \pi} \omega P_{0} \frac{e^{i k r}}{r} \frac{k a}{k} \sin \theta \cos \frac{a}{2} \sin \theta \cos \phi\right] \\
\frac{2 \pi}{2} a & \frac{a}{2} \text { is small so }
\end{aligned}
$$

$$
\begin{aligned}
& r_{1}^{2}=r^{2}+\left(\frac{a}{2}\right)^{2}-2 \cdot \frac{a r}{2} \cos \gamma_{1} \\
& r_{2}^{2}=r^{2}+\left(\frac{a}{2}\right)^{2}-2 \cdot \frac{a r}{2} \cos \gamma_{2} \quad \phi_{1}=\pi \\
& \cos \gamma_{1}=\cos \theta \cos ^{r^{2} \theta_{1}=\frac{\pi}{2}}+\sin \theta \sin \theta_{1} \cos \left(\phi-\phi_{1}\right) \\
& \quad=+\sin \theta \cos (\phi-\pi)=-\sin \theta \cos \phi \\
& \cos \gamma_{2}=+\sin \theta \cos \phi \\
& r_{1}=r\left[1+\left(\frac{a}{2 r}\right)^{2}+\frac{a}{r} \sin \theta \cos \phi\right]^{1 / 2} \\
&
\end{aligned}
$$

$$
\begin{aligned}
&=+\sin \theta \cos (\phi-\pi)=-\sin \theta \cos \phi \\
& \cos \gamma_{2}=+\sin \theta \cos \phi \\
& r_{1}=r\left[1+\left(\frac{a}{2 r}\right)^{2}+\frac{a}{r} \sin \theta \cos \phi\right]^{1 / 2}
\end{aligned}
$$

$$
1-15
$$

$$
\begin{aligned}
& \vec{A}_{\text {tor }}=-\frac{\mu_{0}}{4 \pi} c k^{2} a \frac{e^{i k r}}{r} \sin \theta \cos \phi \\
& \hat{z}_{n} \\
&(\hat{r} \cos \theta-\hat{\theta} \sin \theta)
\end{aligned} \quad \begin{aligned}
B & =\nabla \times \vec{A} \\
& =\hat{r} \frac{1}{r \sin \theta}\left(-\frac{\partial A_{0}}{\partial \phi}\right) \longleftarrow \text { will be of odes } \frac{1}{r^{2}} \text {, is no re }
\end{aligned}
$$

$+\hat{\theta}\left[\begin{array}{cc}\frac{1}{r \sin \theta} & \frac{\partial A_{r}}{\partial \varphi}\end{array}\right] \leftarrow$ will also be of ards $\frac{1}{r^{2}}$, ignore

$$
+\hat{\phi} \underbrace{\frac{1}{r}}\left[\frac{\partial}{\partial r}\left(r A_{\sigma}\right)-\frac{\partial A_{r}}{\partial \theta}\right]
$$

only term that will be of arden $1 / r$

$$
\begin{aligned}
& =\hat{\phi} \frac{1}{r} \frac{\partial}{\partial r}\left(e^{i k_{r}}\right) \cdot \text { constants }=\frac{x \mu_{0}}{4 \pi} c k^{2} a(i k) \frac{e^{i k r}}{r}\left(+\sin ^{2} \theta \cos \phi\right) \hat{p} \\
& =i \frac{\mu_{0}}{4 \pi} c k^{3} a \frac{e^{i k r}}{r} \sin ^{2} \theta \cos \phi \hat{\phi} \\
& \vec{E}=\frac{i Z_{0}}{k} \nabla \times H=\frac{i d}{k} \nabla \times B \quad \quad 60 k \text { at } \nabla \times B=\hat{r} \frac{1}{\sin , \theta}\left[\frac{\partial}{\partial 0}\left(\sin \theta B_{\phi}\right)\right]^{k} \hat{r}^{\frac{1}{r_{2}}} \\
& =\frac{i \omega}{i \mu c t^{3}} a \frac{e^{i k r}}{r}(i k) \sin ^{2} \theta \cos \phi \text { a }+\hat{\theta} \frac{-1}{r} \frac{\partial}{\partial r}(r B Q) \text { < only kep slits } \\
& +\hat{\theta} \frac{1}{r} \frac{\partial}{\partial r}\left(r B_{q}\right) \text { <- only key. } \\
& =c \vec{B} \times \hat{r}=\frac{i \mu_{0}}{4 \pi} c^{2} r^{3} a \frac{e^{i k r}}{r} \sin ^{2} \theta \cos \phi \hat{\theta} \\
& \frac{d p}{d a}=r^{2} \hat{n}^{2}\langle s\rangle=\frac{1}{2} r^{2} \hat{r} \cdot R e\left(E_{x} H^{+}\right)=\frac{1}{2 \mu}\left(\frac{\mu_{0}}{4 \pi}\right)^{2} c^{3} k^{6} a^{2} \sin ^{4} \theta \cos ^{2} \phi \hat{r} \\
& \frac{d P}{d \Omega}=\frac{\mu_{0} c^{3} k^{6} a^{2} \sin ^{4} \theta \cos ^{2} \phi}{32 \pi \pi^{2}}
\end{aligned}
$$

3. Propagation of a TE wave between two perfectly conducting plates. Assume the wave reflects perfectly off each conducting surface, a is the distance between two plates, k is the free-space wave number of the incident plane wave, and θ is the incident angle (the angle between the incident wave and the normal direction to the conducting plate).
(a) Derive the expressions for the cut-off frequency and the wave number along the horizontal (i.e. propagation) and the vertical direction. (18 points)
(b) Determine the phase velocity and group velocity of the wave propagating along the plates. (18 points)
a.

A standing wave must build up in the x direction
only centoin angles will allow the standing ware pattern to
form, $\vec{k} \cdot \hat{z}=k g=|k| \cos \theta$

$$
\cos \theta=\frac{K_{g}}{K}=\sqrt{1-\left(\frac{K_{x}}{k}\right)^{2}}
$$

b.

$$
=\sqrt{1-\left(\frac{\omega_{n}}{\omega}\right)^{2}}
$$

the group velocity is the
speed of the wame in the z divechan

$$
\begin{aligned}
& \Rightarrow k^{2}=k_{x}^{2}+k g^{2} \\
& \text { on } k g=\sqrt{k^{2}-k x^{2}}
\end{aligned}
$$

So the cutoff fregumey is given

$$
\begin{aligned}
& V_{g}=c \cos \theta=c \sqrt{1-\left(\frac{\omega_{p}}{\omega}\right)^{2}} \\
& V_{p}=\frac{c^{2}}{v_{g}}=\frac{c}{\sqrt{1-\left(\frac{\omega_{m}}{\omega}\right)^{2}}} \text { or use } \rightarrow \frac{\text { sperdof this point }}{\cos \theta}
\end{aligned}
$$

$$
\begin{aligned}
& a=m \frac{d x}{2} \\
& \lambda_{2}=\frac{2 a}{m} \quad \Rightarrow \quad k_{x}=\frac{2 \pi}{\lambda_{x}}=\frac{2 m}{2 a} m=\frac{\pi}{a} m \\
& \text { From geometry a } \text { wreneguide }_{\hat{2}} \text { m } \\
& \lambda \text { is free space wavelength } \\
& \begin{array}{l}
\text { inaidut } \rightarrow \vec{k}=k \tilde{x}+k g \hat{z} \\
\text { plemenave }
\end{array} \\
& \omega_{\dot{d}}^{x}=k \times c=\frac{c \pi}{a} m
\end{aligned}
$$

PHYSICS 210A, Winter 2012

Midterm Exam (50 points in total)

- Closed books and closed notes
- Please write down the necessary intermediate steps
- Write your answers in the space provided. Continue on the back if necessary.
- A formula sheet is provided at the end of the exam.
Name:__ ID: .

Problem 1: \qquad

Problem 2: \qquad

Problem 3: \qquad

Problem 4: \qquad

Total:

1. A small sphere of polarizability α and radius a is placed at a great distance from a conducting sphere of radius b, which is maintained at a potential V. For an approximate expression for the force on the dielectric sphere valid for $r \gg a$. (10 points; this is a comprehensive exam problem in Fall 2011)
2. Suppose the entire region below plane $z=0$ is filled with a uniform and linear dielectric material with permitivity ε. A point charge q is placed a distance d above the origin.
a) Find the potential with $z>0$. (10 pints)
b) Find the bound charge on the surface of the dielectric material. (4 points)
3. Two infinite thin plates are located at $z= \pm d / 2$ with potential $\pm V \cos (\mathrm{ky})$, respectively. Find the electrostatic potential and the electric field in the space between the two plates. (12 points)
4. The linear charge density on a ring of radius a is given by $\rho=\frac{q}{a}(\cos \phi-\sin \phi)$. Find the first three monopole, dipole, and quadrupole moments of the system, and use these moments to write an expression for the potential at an arbitrary point in space. (14 points)
5. A small sphere of polarizability α and radius a is placed at a great distance from a conducting sphere of radius b, which is maintained at a potential V. For an approximate expression for the force on the dielectric sphere valid for $r \gg a$. (10 points; this is a comps problem in Fall 2011)
dipole $\vec{p}=\varepsilon 0 \times \vec{E}$

$$
V=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{b}
$$

E at spare is

$$
Q=4 \pi \varepsilon_{0} b V
$$

$$
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r^{2}}=b v \frac{1}{r^{2}}
$$

indued dial nones:

$$
\vec{p}=\varepsilon_{0} \propto \vec{E}=\frac{\varepsilon_{0} \alpha b V}{1} \hat{r}
$$

Fiebl of dipante: (crisis moved to dipole)

$$
\vec{E}_{\text {dipole }}=\frac{1}{4 \pi r_{0}} \frac{3 \hat{r}(\hat{r} \cdot \vec{p})-\vec{p}}{r^{3}}
$$

Align dipole m/zanis
the dipole field at the conducting sphene is

$$
\hat{p} \begin{array}{ll}
\vec{p}=|p| z^{4} \\
r & \vec{r}=-\hat{z} \\
r &
\end{array}
$$

$$
\vec{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{-\hat{z}(-\hat{z}, \hat{z}) 3|p|-|p| \hat{z}}{r^{3}}=\frac{2|p|}{4 \pi \varepsilon_{0}} \frac{+\hat{z}}{r^{3}}
$$

this acts on a point above (2)

$$
\begin{aligned}
& \vec{F}=\vec{E}=\frac{4 \pi \varepsilon_{0} b V}{\frac{2}{4 \pi \varepsilon_{0}}} \cdot \frac{\varepsilon_{0} a b V}{2 r^{2}} \frac{2}{r^{3}} \\
& \vec{F}=\frac{2 a b^{2} \varepsilon_{0} V^{2}}{r^{5}} \hat{2} \quad \text { (attractive) }
\end{aligned}
$$

2. Suppose the entire region below plane $z=0$ is filled with a uniform and linear dielectric material with permitivity ε. A point charge q is placed a distance d above the origin.
a) Find the potential with $z>0$. (10 pints)
b) Find the bound charge on the surface of the dielectric material. (4 points)
$2>0$
 $2<0$

$$
\phi_{2<0}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{3}}{r_{1}}
$$

Boundary conditions E_{11} centinacauss on $g_{0}=\sigma$ D_{1} continuous
$\phi_{\text {contimians }}: \frac{q_{1}}{\left[\rho^{2}+d^{2}\right]^{1 / 2}}+\frac{q_{2}}{\left[\rho^{2}+d^{2}\right]^{1 / 2}}$
$D_{1}:\left.\quad \varepsilon_{0} \frac{\partial \phi_{2}>0}{\partial z}\right|_{2=0}=\left.\varepsilon \frac{\partial q_{2} \cdot 0}{\partial 2}\right|_{z=0}$

$$
q_{1}+q_{2}=q_{3}
$$

$$
\begin{aligned}
& \left.q_{1} \frac{d}{\left[\rho^{2}+d^{2}\right]^{3 / 2}}-\frac{q_{2} d}{\left[\rho^{2}+d^{2}\right]^{3 / 2}}=\frac{\varepsilon_{1}}{\varepsilon_{0}} q_{3} \frac{d}{\left[\rho^{2}+d^{2}\right]}\right]^{3 / 2} \\
& 2 q_{1}=\left(1+\varepsilon / \varepsilon_{0}\right) q_{3} \Rightarrow q_{3}=\frac{2}{1+\varepsilon_{0}} q_{1} \\
& 2 q_{2}=\left(1-\varepsilon / \varepsilon_{0}\right) q_{3}
\end{aligned} \quad q_{1}-q_{2}=\frac{c}{\varepsilon_{0}} q_{3}
$$

$$
\begin{aligned}
& \phi_{z>0}=\frac{q}{4 \pi \varepsilon_{0}}\left[\frac{1}{\left[\rho^{2}+(2-\alpha)^{2}\right]^{1 / 2}}-\frac{\left(\frac{\varepsilon}{\varepsilon_{0}}-1\right)}{\left(\frac{\varepsilon}{\left.\varepsilon_{0}+1\right)}\right.} \frac{1}{\left[\rho^{2}+(2+d)^{2}\right]^{1 / 2}}\right] \\
& \phi_{z<0}=\frac{q}{4 \pi \varepsilon_{0}} \cdot \frac{2}{\left(\frac{\varepsilon}{\varepsilon_{0}}+1\right)} \frac{1}{\left[\left(\rho^{2}+(2+\alpha)^{2}\right]^{1 / 2}\right.}
\end{aligned}
$$

b.

$$
\begin{gathered}
\sigma=+p_{21} \hat{\varepsilon} \quad p=\varepsilon_{0} 2 E=\varepsilon_{0} \cdot\left(\frac{\varepsilon}{\varepsilon_{0}}-1\right) E \\
E \frac{d}{2=-q} \frac{-q}{2 \pi \varepsilon_{0}} \frac{1}{\left(\frac{\varepsilon}{\varepsilon}+1\right)} \frac{-d}{\left[\rho^{2}+1^{2}\right]^{3 / 2}} \\
\sigma=\frac{-q}{2 \pi}\left(\frac{\varepsilon \varepsilon_{0}-1}{\varepsilon_{\varepsilon_{0}}+1}\right) \frac{d}{\left[\rho^{2}+d^{2}\right]^{3 / 2}}
\end{gathered}
$$

3. Two infinite thin plates are located at $z= \pm d / 2$ with potential $\pm V \cos (k y)$, respectively. Find the electrostatic potential and the electric field in the space between the two plates. (12 points)

$$
\begin{gathered}
\phi(2, y)=\sum_{k} A_{k} \cos k y \sin k z \\
\phi\left(\pm \frac{d}{2}, y\right)= \pm V_{\cos k y}=A \cos \cos \sin h\left(\pm \frac{d}{2}\right) \\
A=\frac{v}{\sinh k d / 2}
\end{gathered}
$$

$$
\phi=\frac{V}{\sin k d / 2} \quad \cos k y \sin h(k z)
$$

4. The linear charge density on a ring of radius a is given by $\rho=\frac{q}{a}(\cos \phi-\sin \phi)$. Find the first three monopole, dipole, and quadrupole moments of the system, and use these moments to write an expression for the potential at an arbitrary point in space. (14 points)

$$
\left.\rho=\frac{a}{a}(\cos \phi-\sin \phi)\right) \delta(r-a) \delta(z)
$$

mongol

$$
\dot{q}_{0}-\int \rho d v=\frac{q \cdot a}{a}\left(\int_{0}^{2 \pi}(\cos \phi-\sin \phi) d \phi=0\right.
$$

dipole

$$
\begin{aligned}
& \left.\vec{p}=\int \vec{x} \rho d v^{\prime}=\frac{q}{a} \int\left[\begin{array}{c}
r^{\prime} \cos \phi \\
\sin ^{\prime} \phi \\
2
\end{array}\right](\cos \phi-\sin \phi) \quad \delta(r-a) \delta / a\right) r \cos d \theta a \\
& =\frac{q}{a} \int\left[\begin{array}{c}
r^{2}\left(\cos ^{2} \phi \cdot \sin (\cos \theta)\right. \\
r^{2}\left(\sin ^{2} \cos \varphi \sin \alpha\right) \\
0
\end{array}\right] \delta(r-a) a d \\
& =q a \int\left[\begin{array}{c}
\cos ^{2} \\
-\sin ^{2} \\
0
\end{array}\right] d \theta \\
& \vec{p}=q a \pi\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right] \\
& \text { spharead } r^{2}=r^{\frac{5}{2}+z^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& Q_{x x}=\frac{2}{a} \int\left(3 r^{2} \cos ^{2} \phi-\left(r^{2} z^{2}\right)\right)((\cos \phi-\sin \phi) \delta(r-a) d(b) \quad r \operatorname{ch} d \phi d z \\
& =q a^{2} \int\left(3 \cos ^{2} \phi-1\right)(\cos \phi-\sin \phi) d \phi \\
& =0 \\
& Q_{y y}=2 / a \int\left(3 r^{2} \sin ^{2} \theta-\left(r^{2}+z^{2}\right)\right)(\cos \phi-\sin \phi) \delta(r-a) \delta(2 x) r d x d q d z \\
& Q_{2 z}=\frac{d}{a} \int\left(3 \cdot 2^{2}-\left(r^{2}+z^{2}\right)\right)^{(c \cdot \alpha} \delta(r-a) \delta(z) r d a t q d c \\
& =\frac{q}{a} \int-r^{3}(\cos \theta-\sin \theta) d(c a) d d \\
& \because 0 \\
& Q_{x y}=\frac{q}{a} \int 3 r^{2} \cos \phi \sin \phi(\cos (-\sin \phi) \delta(1-a) d(x) r d x \phi d z \\
& =3 q a^{2} \int\left(\cos ^{2} \phi \sin \phi-\cos \phi \sin ^{2} \phi\right) d \phi \\
& Q_{i j}=0 \\
& Q_{x 2}=\theta_{y}=0 \\
& \phi=\frac{1}{4 \pi \varepsilon_{0}} \frac{\vec{p}^{-1} r^{2}}{r^{2}}=\frac{5 a}{4 \varepsilon_{0}} \frac{(\cos \phi-\sin \phi) \sin \theta}{r^{2}}
\end{aligned}
$$

PHYSICS 210A, Winter 2012
Final Exam (100 points in total)

- Closed books and closed notes
- Please write down the necessary intermediate steps
- Write your answers in the space provided. Continue on the back if necessary.
- A formula sheet is provided in the last page of the exam.

Name: \qquad ID: \qquad .

Problem 1: \qquad

Problem 2: \qquad

Problem 3: \qquad

Problem 4: \qquad

Problem 5: \qquad

Problem 6: \qquad

Total:

1. A sphere of radius R_{1} has a charge density ρ uniform within its volume, except for a small spherical hollow region of radius R_{2} located a distance a from the center.
(a). Find the electric field \vec{E} at the center of the hollow sphere. (7 points)
(b). Find the potential ϕ at the same point. (7 points)
2. A uniform current density $\vec{J}=\vec{J}_{0} \hat{z}$ flows through all space between $x=-a$ and $x=a$ (a current sheet), as shown in the figure below.
(a). Find the magnetic field \vec{B} (magnitude and direction) everywhere. (7 points)
(b). An electron (mass m_{e}, charge $-e$) is fired from an electron gun at $x=2 a$ with velocity $\vec{v}=-v \hat{x}$ (toward the origin). What is the minimum speed v the electron must have to reach the point $x=a$ (the edge of the current sheet)? (7 points)

3. A sphere of radius a made of linear magnetic material with permeability μ is placed in an otherwise uniform magnetic field $\vec{H}_{0}=H_{0} \hat{z}$ in vacuum.
(a). Find the magnetic fields, \vec{H}, inside and outside the sphere. (10 points)
(b). Find the induced magnetization. (4 points)
(c). Find the bound currents inside the sphere, \vec{J}_{b}, and on its surface, \vec{K}_{b}. (4 points)
4. An infinite straight wire carries a linearly increasing current $I(t)=k t$, for $t>0$, where k is a constant. Find the electric and magnetic fields (\vec{E} and \vec{B}) generated, for $\mathrm{t}_{\mathrm{r}}>0$. (You may ignore delta function pulses associated with the turn-on.) Hint: $\int \frac{d x}{\sqrt{1+x^{2}}}=\sinh ^{-1} x$. (14 points)
5. A cylinder of radius R and infinite length is made of permanently polarized dielectric. The polarization vector \vec{P} is everywhere proportional to the radial vector \vec{s} in a cylinder coordinates (s, ϕ, z), $\vec{P}=a \vec{s}$, where a is a positive constant. The cylinder rotates around its axis with an angular velocity ω. This is a non-relativistic problem, $-\omega R \ll c$.
(a). Find the electric field \vec{E} at a radius s both inside and outside the cylinder. (6 points)
(b). Find the magnetic field \vec{B} at a radius s both inside and outside the cylinder. (6 points)
(c). What is the total electromagnetic energy stored per unit length of the cylinder; (8 points)
(i) before the cylinder started spinning?
(ii) while it is spinning?

Where did the extra energy come from?
6. We assume the existence of magnetic charge related to the magnetic field by the local reaction $\vec{\nabla} \cdot \vec{B}=\mu_{0} \rho_{m}$.
(a). Using the Gauss's theorem, obtain the magnetic field \vec{B} of a point magnetic charge at the origin. (5 points)
(b). In the absence of the magnetic charge, the curl of the electric field is given by the Faraday's law, $\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$. Show that this law is incompatible with the magnetic charge density that is a function of time. (5 points)
(c). Assuming that magnetic charge is conserved, derive the local relation between the magnetic charge current density \vec{J}_{m} and the magnetic density ρ_{m}. (5 points)
(d). Modify Faraday's law as given in part (b) to obtain a law consistent with the presence of the magnetic charge density that is a function of position and time. (5 points)

$$
\begin{aligned}
& \rho_{b}=-\vec{\nabla} \cdot \vec{P} \quad \sigma_{b}=\vec{P} \cdot \hat{n} \\
& \Phi_{b}(\vec{x})=\frac{1}{4 \pi \varepsilon_{0}} \int_{V} \frac{\rho_{b}\left(\vec{x}^{\prime}\right)}{\left|\vec{x}-\vec{x}^{\prime}\right|} d V^{\prime}+\oint_{S} \frac{\sigma_{b}}{\left|\vec{x}-\vec{x}^{\prime}\right|} d a^{\prime} \\
& \vec{J}_{b}=\vec{\nabla} \times \vec{M} \quad \vec{K}_{b}=\vec{M} \times \vec{n} \\
& \vec{A}_{b}(\vec{x})=\frac{\mu_{0}}{4 \pi} \int \frac{J_{b}\left(\vec{x}^{\prime}\right)}{\left|\vec{x}-\vec{x}^{\prime}\right|} d V^{\prime}+\frac{\mu_{0}}{4 \pi} \int \frac{K_{b}\left(\vec{x}^{\prime}\right)}{\left|\vec{x}-\vec{x}^{\prime}\right|} d a^{\prime} \\
& \Phi(r, \theta)=\sum_{l=0}^{\infty}\left[A_{l} r^{l}+\frac{B_{l}}{r^{l+1}}\right] P_{l}(\cos \theta) \\
& \Phi(r, \theta, \varphi)=\sum_{l=0}^{\infty} \sum_{m=-l}^{m}\left[A_{l}^{m} r^{l}+\frac{B_{l}^{m}}{r^{l+1}}\right] Y_{l}^{m}(\theta, \varphi) \\
& P_{0}(x)=1 \quad P_{1}(x)=x \quad P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right) \quad P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right) \\
& E_{1}^{\|}=E_{2}^{\|} \\
& D_{2}^{\perp}-D_{1}^{\perp}=\sigma_{f} \\
& B_{1}^{\perp}=B_{2}^{\perp} \\
& \vec{H}_{2}^{\|}-\vec{H}_{1}^{\|}=\vec{K}_{f} \times \hat{n} \\
& \vec{p}=\int \vec{x}^{\prime} \rho\left(\vec{x}^{\prime}\right) d V^{\prime} \quad \Phi(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}} \frac{\vec{p} \cdot \hat{r}}{r^{2}} \quad \vec{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{3 \hat{r} \hat{r} \cdot \vec{p}-\vec{p}}{r^{3}} \\
& \vec{m}=\frac{1}{2} \int \vec{x}^{\prime} \times \vec{J}\left(\vec{x}^{\prime}\right) d V^{\prime} \quad \vec{A}(\vec{x})=\frac{\mu_{0}}{4 \pi} \frac{\vec{m} \times \hat{r}}{r^{2}} \quad \vec{B}(\vec{x})=\frac{\mu_{0}}{4 \pi} \frac{3 \hat{r} \hat{r} \cdot \vec{m}-\vec{m}}{r^{3}} \\
& \vec{D}=\varepsilon \vec{E} \quad \varepsilon=\varepsilon_{0}\left(1+\chi_{e}\right) \quad \vec{B}=\mu \vec{H} \quad \mu=\mu_{0}\left(1+\chi_{m}\right) \\
& \Phi(\vec{x}, t)=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho\left(\vec{x}^{\prime}, t_{r}\right)}{\left|\vec{x}-\vec{x}^{\prime}\right|} d V^{\prime} \quad \vec{A}(\vec{x}, t)=\frac{\mu_{0}}{4 \pi} \int \frac{\vec{J}\left(\vec{x}^{\prime}, t_{r}\right)}{\left|\vec{x}-\vec{x}^{\prime}\right|} d V^{\prime} \quad t_{r}=t-\frac{\left|\vec{x}-\vec{x}^{\prime}\right|}{c}=t-\frac{r}{c} \\
& \int_{V}(\vec{\nabla} \cdot \vec{v}) d V=\oint_{S} \vec{v} \cdot d \vec{a} \quad \oint_{C} \vec{v} \cdot d \vec{l}=\int_{S} \vec{\nabla} \times \vec{v} \cdot d \vec{a} \quad \vec{\nabla} \cdot \vec{v}=\frac{1}{s} \frac{\partial}{\partial s}\left(s v_{s}\right)+\frac{1}{s} \frac{\partial v_{\phi}}{\partial s}+\frac{\partial v_{z}}{\partial s} \\
& W=\frac{1}{2} \int \vec{D} \cdot \vec{E} d V \quad W=\frac{1}{2} \int \vec{B} \cdot \vec{H} d V \\
& \nabla \cdot \nabla \times A=0 \\
& \nabla \cdot A=\frac{1}{s} \frac{\partial}{\partial s}\left(s A_{s}\right)+\frac{1}{s} \frac{\partial}{\partial \varphi}\left(A_{\varphi}\right)+\frac{\partial}{\partial z}\left(A_{z}\right) \\
& \nabla \times A=\hat{s}\left(\frac{1}{s} \frac{\partial A_{z}}{\partial \varphi}-\frac{\partial A_{\varphi}}{\partial z}\right)+\hat{\varphi}\left(\frac{\partial A_{s}}{\partial z}-\frac{\partial A_{z}}{\partial s}\right)+\hat{z} \frac{1}{s}\left(\frac{\partial}{\partial s}\left(s A_{\varphi}\right)-\frac{\partial A_{s}}{\partial \varphi}\right)
\end{aligned}
$$

1.

$$
\overrightarrow{r_{1}}=\vec{a}+\overrightarrow{r_{2}}
$$

a.

$$
\vec{E}=\frac{p}{3 \varepsilon_{0}} \vec{r}_{3}-\frac{p}{3 \varepsilon_{0}} \overrightarrow{r_{2}}=\frac{p}{3 \varepsilon_{0}} \vec{a} \text {, unitiona in hace. }
$$

b.

$$
\begin{gathered}
\phi=\phi_{1}+\phi_{2} \\
\phi_{\text {ror }}=\frac{\rho}{2 \varepsilon_{0}}\left[\begin{array}{l}
R_{1}^{2}-\frac{n^{2}}{3} \\
\left.-\left(R_{2}^{2}-\frac{n^{2}}{3}\right)\right] .
\end{array}\right.
\end{gathered}
$$

Potantion in unatition sphere $Q=\frac{Q}{4 \pi \varepsilon_{0}} \frac{1}{R}$ surtace

$$
=\frac{\delta}{3 \varepsilon_{0}} R^{2}
$$

$$
\Phi=-\int E d^{2}
$$

$$
=\left.\frac{-r}{380} \int_{R^{\prime}}^{r} y^{\prime} d^{\prime \prime}\right|^{r}
$$

$$
=\left.\frac{-5}{3} \varepsilon_{0} \quad \frac{r^{\prime \prime}}{2}\right|_{R} ^{r}
$$

$$
=\frac{2}{\sigma \varepsilon_{0}}\left(R^{2} \cdot r^{2}\right)
$$

$$
Q_{\substack{\text { curt } \\ \text { of } t_{\text {ak }}}}=\frac{\rho}{2 \varepsilon_{0}}\left[R_{1}^{2}-R_{2}^{2}-\frac{a^{2}}{3}\right]
$$

$$
\begin{aligned}
& r_{1}=a \\
& r_{2}=0
\end{aligned}
$$

ant souts af holl,

$$
\begin{aligned}
\phi(r)^{r} & =\frac{\rho}{3 z_{0}}\left[R^{2}+\frac{R^{2}}{2}-\frac{r^{2}}{z_{2}}\right] \\
& =\frac{\rho}{2 \varepsilon_{0}}\left[R^{2}-\frac{r^{2}}{3}\right]
\end{aligned}
$$

$$
\begin{aligned}
& 4 x^{2} E=\frac{-2}{3}+r^{2} p / 20 \\
& \vec{E}=\frac{8}{3 \varepsilon_{\theta}} r \vec{r}
\end{aligned}
$$

2.

$$
\begin{aligned}
& \text { Use span's caw } \\
& a_{1} \text { BuL }=\mu_{0} J_{0} \cdot L \cdot a \quad|x|>a \\
& B=\mu_{0} \cdot J_{0} \\
& B \cdot L=\mu 0 J L|x| \\
& B=\mu_{0} I X \\
& \vec{B}=\mu_{0} J_{0}\left\{\begin{array}{cc}
a \hat{y} \quad x>a \\
x & \hat{y} \\
-a>x>a \\
-a & \hat{y} \quad x<-a
\end{array}\right.
\end{aligned}
$$

b.
$v_{m}-e$
$\frac{1}{y}$

The election will carve because its in a ceniform is fired

$$
\begin{aligned}
F=\frac{m V^{2}}{R} & =e V B \\
V & =\frac{e B R}{m}
\end{aligned}
$$

we wont $R=a$
So $\quad V=\frac{e B a}{m}=\frac{\mu_{0} e I_{0} a^{2}}{m}$
3.
$\xrightarrow{\mathrm{H}_{6}}>$

$$
\begin{aligned}
& \phi_{\text {in }}=\sum_{l} A_{l} r^{l} P_{l} \\
& Q_{\text {out }}=\sum_{l} \frac{B_{l}}{r^{l+1}} P_{l}-H_{0} r \cos \theta
\end{aligned}
$$

match:

$$
\begin{array}{ll}
A_{l}=B_{l}=0 \text { li } 1 \\
A_{1} a=\frac{B_{1}}{a^{2}}-H_{0} a \quad & A_{1}=\frac{B_{1}}{a^{3}}-H_{0}
\end{array}
$$

$H=-\nabla \phi=\frac{1}{\mu} B$
B1 count:

$$
\begin{aligned}
& \hat{r} \cdot \vec{H}_{\text {in }}=-A_{1} P_{1} \\
& r^{3}, \vec{H}_{\text {count }}:+\left[(+2) \frac{B_{1}}{r^{3}} P_{1}+H_{0} \cos \theta\right] \\
& -\mu A_{1}=\mu_{0}\left[\frac{2 B_{1}}{a^{3}}+H\right] \quad A_{1}=-\frac{\mu_{0}}{\mu}\left[\frac{2 B_{1}}{a^{3}}+H_{0}\right]=\frac{B_{1}}{a^{3}}-\mu_{0} \\
& \frac{B_{1}}{a_{3}}\left(1+\frac{2 \mu_{0}}{\mu^{3}}\right)=H_{0}\left(1-\frac{\mu_{0}}{\mu_{0}}\right) \\
& B_{1}=a^{3} \mu_{0} \frac{\mu-\mu_{0}}{\mu+2 \mu_{0}} \\
& Q_{\text {in }}=H_{0}\left(\frac{\mu-\mu_{0}}{\mu+2 \mu_{0}}-1\right) r \cos \theta \quad Q_{\text {ant }}: \frac{B_{1}}{r^{2}} \cos \theta-H_{0} 2 \\
& =-H_{0}\left(\frac{3 \mu_{0}}{\mu+2 \mu_{0}}\right) r \cos \theta \\
& \vec{H}_{\text {in }}=H_{0} \frac{3 \mu_{0}}{\mu_{+2 \mu_{0}}} \hat{z} \\
& \vec{H}_{\text {count }}=H_{0} \hat{z}-B_{1}\left(-\frac{2 \cos \theta}{r^{3}} \hat{r}-\frac{\sin \theta}{r^{3}} \hat{\theta}\right) \\
& =\mu_{0} \hat{\imath}+H_{0} \frac{\mu-\mu_{0}}{\mu+2 \mu_{0}} \cdot \frac{a^{3}}{r^{3}}(2 \cos \theta \hat{r}+\sin \theta \hat{\theta})
\end{aligned}
$$

b,

$$
\begin{aligned}
& H=\frac{1}{\mu_{0}} B-M=\frac{1}{\mu} B \\
& \quad M=\left(\frac{1}{\mu_{0}}-\frac{1}{\mu}\right) B=\left(\frac{\mu-\mu_{0}}{\mu_{0}}\right) B=\frac{\mu-\mu_{0}}{\mu_{0}} H \\
& \vec{M}=H_{0} \frac{3 \mu_{0}}{\mu_{0}+2 \mu_{0}} \frac{\mu-\mu_{0}}{\mu_{0}} \hat{z}=3: \frac{\mu-\mu_{0}}{\mu_{0}+2 \mu_{0}} H_{0} \hat{z}
\end{aligned}
$$

dipole namuil:

$$
\begin{aligned}
& \Phi_{0 \text { out }}=\frac{B_{1}}{r^{2}} \cos \theta=H_{0} \frac{\mu-\mu_{0}}{\mu+2 p_{0}} \frac{a^{3} \cos \theta}{r^{2}} \\
& =\frac{1}{3} \text { 箇 } a^{3} \frac{\cos \theta}{r^{2}} \\
& \frac{4}{3} \pi a^{3} M
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \vec{m}=\frac{4}{3} \pi a^{3} \vec{M}
\end{aligned}
$$

c.

$$
\begin{aligned}
J_{b} & =\nabla \times M \quad \vec{n}=|m| \hat{z} \\
& =0 \\
\vec{k}_{b} & =m \times \hat{n} \quad=|m| \hat{z} \times \hat{r}=|m| \sin \hat{\phi}
\end{aligned}
$$

4.

$\phi=0 \quad$ (astrol wine)

$$
t>0 \quad \vec{A}=\frac{\mu_{0}}{4 \pi} 2_{0} \int_{0}^{\sqrt{e^{2} t^{2}-\rho^{2}}} \frac{k \hat{k}_{1} \hat{z}}{\left[\rho^{2}+z^{2}\right]^{1 / 2}} d z
$$

$$
t_{r}=t-\frac{\sqrt{2}}{c}
$$

$$
\sqrt{\rho^{2}+z_{\text {max }}^{2}}=a
$$

$$
2 \operatorname{man}=x^{2} t^{2}-2^{2}
$$

$$
\vec{A}=\frac{\mu_{0} k}{2 \pi}\left[t \operatorname{Arcsinh} \frac{\sqrt{c^{2} t^{2}-\rho^{2}}}{\rho}-\frac{1}{c} \sqrt{e^{2} t^{2}-p^{2}}\right] \hat{z} t>0
$$

$$
\vec{E}=-\frac{d \vec{A}}{d t}=-\frac{\mu_{0} \pi}{2 \pi}\left[-\frac{1}{2} \frac{\chi c^{2}}{\sqrt{c^{2} t^{2}}}+\operatorname{Arcsin} \frac{\sqrt{c^{2} t^{2} 卫^{2}}}{s}\right.
$$

$$
\left.+t\left[\frac{1}{\sqrt{1+\frac{c^{2} x^{2}}{s^{2}}}} \frac{1 \cdot \alpha c^{2} t}{2 y^{\left.c^{2} t^{2}\right)^{2}}}\right]\right]
$$

$$
\frac{1}{\sqrt{1+x^{2}}}
$$

$$
\frac{b}{e^{t}} \cdot \frac{c^{2} t}{B \sqrt{c^{2}-s}}
$$

$$
=-\frac{\mu^{\mu} k}{2 \pi}\left[-\frac{c^{t}}{\sqrt{c^{2}+t^{2}}}+\frac{c^{t}}{\sqrt{s^{2}+x^{2}}}+\operatorname{Arcsinh} \frac{\sqrt{\frac{y^{2}+x^{2}}{2}}}{\sigma}\right]
$$

$$
=-\frac{\mu_{0} k}{2 \pi} \operatorname{Arcsinh} \sqrt{\frac{c^{2} k^{2}}{g^{2}}-1} \quad \hat{z} \quad t_{r}>0
$$

$$
\begin{aligned}
& \frac{\rho}{c \sqrt{c^{2} y}}+t \cdot \frac{\beta}{8 t} \cdot \frac{-\left(c^{x} t^{2}\right)}{\rho^{2} \sqrt{c^{2} t^{2} y^{2}}} \\
& =-\frac{\mu_{0} \pi}{2 \pi}\left[\frac{\rho^{2}}{\rho c \sqrt{c^{2} t^{2} g^{2}}}-\frac{c^{2} t^{2}}{c \rho \sqrt{c^{2}-s^{2}}}\right]=\sqrt{\frac{\mu_{0} k}{2 \pi c} \cdot \frac{\sqrt{c^{2} t^{2}-\rho^{2}}}{\rho}} \hat{\phi}
\end{aligned}
$$

$$
\begin{aligned}
& 1 \int \frac{d z}{\sin A} u=2 / p \quad \cosh u d n=\frac{t}{\tan } d z \\
& \frac{1}{\rho} \int \frac{d z}{\left[1+\frac{z^{2}}{\rho^{2}}\right]^{1 / 2}}=\iint \frac{\operatorname{coshach}}{\left[1+\sin h^{2}\right]^{2}}=\int d \omega=\operatorname{Arcsinh} z / \rho
\end{aligned}
$$

5.

$$
\begin{aligned}
\left.\vec{p}=a \vec{s} \quad \begin{array}{rl}
\rho_{b}=-\nabla \cdot p & =\frac{-1}{s} \frac{d}{d s}(s(a s)) \\
& =\frac{-1}{s} a(2 s)=-2 a
\end{array}\right)
\end{aligned}
$$

Thene is unitum chags dansity $y=-2 a$ in cyliach on santace: $\quad \sigma_{b}=P \cdot \hat{A}=a s \hat{s} \cdot \hat{s}=a R$
a. E in cylinates.
use Gruss: Laow

outside

$$
\begin{aligned}
2 \pi S, K E & =\frac{-z a \pi R^{2} K+a R \cdot 2 \pi R K}{\varepsilon_{0}} \\
& =\frac{1}{\varepsilon_{0}}\left(-a R^{2}+a R^{2}\right)=0
\end{aligned}
$$

$E=0$ autsiole
b. reacl from HW, a moving pabaization emeater au cffective mopnctication.

Use Amparis' law

$$
\begin{aligned}
& \text { Insside } S<R \\
& \left.B \cdot L=\mu_{0}(-2 a \omega i) \int_{0}^{s} S^{\prime} d s^{\prime}=-2 \mu_{0} a \omega\right) \frac{s^{2}}{2} \\
& \vec{B}=\mu_{0} a \cdot \omega s^{2}
\end{aligned}
$$

$$
B \cdot L=\mu_{0}\left[-2 a \omega L \frac{R^{2}}{2}+a \omega R^{2} L\right]=0
$$

$$
B=0
$$

$$
\begin{aligned}
& \vec{m}_{\text {eff }}=\pi \pi_{\text {minerasia }}^{0}+\vec{P} \times \vec{V} \\
& \vec{v}=\vec{a}>\vec{s}=5 \omega \hat{\phi} \\
& =a \omega s^{2} \hat{s} \times \hat{\phi}=a \omega s^{2} \hat{z} \\
& \vec{J}_{b}=\nabla \times \vec{M}=-\frac{d \mu_{a}}{d s} \hat{q}=-2 \dot{a} \omega \bar{\omega} \hat{\phi} \hat{\phi} \text { (could have guassed ithis) } \\
& \vec{K}_{b}=m \times n=a \cdot w R^{2} \hat{z} \times \hat{s}=a w R^{2} \hat{\phi}
\end{aligned}
$$

$$
\begin{aligned}
& x^{2} S^{-1} \alpha E=-\frac{2}{x_{0}} \cdot \pi s^{2} L \\
& \vec{E}:-\frac{a g}{E_{0}} \hat{s}
\end{aligned}
$$

C. Eargystand
i Before rotion, only electric

$$
\begin{aligned}
W_{e} & =\frac{1}{2} \int D \cdot E=\frac{\varepsilon}{2} \int E^{2} \\
\frac{w_{e}}{L} & =\frac{\varepsilon}{2} \frac{a^{2}}{\varepsilon_{0}^{2}} \int_{0}^{R} s^{2} s \operatorname{sid} s d \phi \\
& =\frac{2}{2} \frac{\varepsilon}{\varepsilon_{0}^{2}} a^{2} \frac{R^{4}}{4}=\frac{\pi}{d} \cdot \frac{\varepsilon}{\varepsilon_{0}^{2}} a^{2} R^{4}
\end{aligned}
$$

ii wita mation, add regoulic.

$$
\begin{aligned}
& W_{B}=\frac{1}{2} \int B \cdot H=\frac{1}{2} \mu B^{2} \\
& =\frac{1}{2 \mu} \mu_{0}^{2} a^{2} \alpha^{2} \int s^{4} s d s d \phi \\
& =\frac{2 \pi}{2} \frac{\mu^{2}}{\mu} a^{2} \omega^{2} \frac{R^{6}}{6}=\frac{\pi}{6} \frac{\mu_{0}^{2}}{\mu^{2}} a^{2} \omega^{2} R^{6} \\
& \text { Totel bresy }=\frac{w_{B}+v_{B}}{L}=\frac{\pi}{4} \frac{E_{0}^{2}}{\varepsilon_{0}^{2}} a^{2} R^{4}+\frac{\pi}{B} \frac{\mu_{0}^{2}}{\mu} a^{2} \omega^{2} R^{6} \\
& =\frac{\pi}{9} \frac{2}{\varepsilon_{0}^{2}} a^{2} R^{4}\left(1+\frac{2}{3} \frac{\varepsilon_{0}^{2} \mu_{0}^{2}}{\sum_{\frac{v}{\alpha^{2}}}^{\mu}} \omega^{2} R^{2}\right)
\end{aligned}
$$

The "entra" aungy is the moguctic enesy that come frosm the

6. $\nabla \cdot B=\mu_{0} \rho_{m}$
a.

$$
\begin{aligned}
& 4 \pi r^{2}{ }_{B}=\mu_{0} q n \\
& \vec{B}=\frac{\mu_{0}}{4 \pi} \quad \frac{q_{m}}{r^{2}} r
\end{aligned}
$$

b.

$$
\vec{\nabla} \times \vec{E}=-\frac{\partial B}{\partial f}
$$

Dinequen of bot bisilt:

$$
\begin{aligned}
\nabla \cdot(\nabla \times E) & =-\frac{d}{d t} \nabla \cdot B \\
0 & =\gamma_{d}^{d t} \rho m
\end{aligned}
$$

Fonaduy's lew is incosonpoble with tirevaying muguetic chage density.
c_{1}

$$
\begin{aligned}
& \int d a \vec{J}_{m} \cdot \hat{n}=-\frac{d}{d t} \int \rho_{m} d V \\
& \int_{V} \nabla \cdot J d v=-\frac{d}{d t} \int P_{m} d v \\
& \nabla \cdot \vec{J}_{m}=-\frac{d}{d t} P_{m}
\end{aligned}
$$

d. Fandlays Law shaull be comensistat with $V \cdot J_{m}=\frac{-d}{d t}$

$$
\begin{aligned}
\nabla \cdot(\nabla \times E)= & -\frac{d}{d t} \nabla \cdot B-\mu_{0} \nabla \cdot J_{m} \\
& -\mu_{0} \frac{d g}{d t}-\mu_{0} \nabla \cdot J \\
\nabla \times\left[F=-\frac{d B}{d t}-\mu_{0} J_{m}\right\rangle \rho= & -\mu_{0}\left(\frac{d p}{d t}+\nabla \cdot J\right)=0
\end{aligned}
$$

1. Consider the infinite two-dimensional conducting plane depicted in the figure below. The right half is maintained at electrostatic potential V_{0} while the left half is maintained at potential $-V_{0}$. Calculate the potential above the plane. (25 points)
$-V_{6}$
17
2. The figure below shows the cross section of an infinitely long circular cylinder of radius $3 a$ with an infinitely long cylinder hole of radius a displaced so that its center is at a distance a
from the center of the big cylinder. The solid part of the cylinder carries a current I, distributed uniformly over the cross section, and out from the plane of the paper.
(a) Find the magnetic field at all points on the plane P containing the axes of the cylinder. (15 points)
(b) Determine the magnetic field throughout the hole. (10 points)

3. Use the Maxwell's stress tensor to calculate the net force on the northern hemisphere of a uniformly charged solid sphere of radius R and charge q. (25 points)
4. Consider a dielectric medium of infinite extent in all directions. The medium has a tensor permittivity, given by

$$
\vec{\varepsilon}=\left(\begin{array}{lll}
\varepsilon_{x x} & 0 & 0 \\
0 & \varepsilon_{y y} & 0 \\
0 & 0 & \varepsilon_{z z}
\end{array}\right)
$$

where $\varepsilon_{x x}=\varepsilon_{y y}=\varepsilon_{\perp}, \varepsilon_{z z}=\varepsilon_{\|}, \varepsilon_{\perp} \neq \varepsilon_{\|}$and (x, y, z) refer to Cartesian coordinates. A point charge of charge q is placed at the origin of the coordinate system.
(a) Find the magnitude of the electric field at an arbitrary point (x, y, z), i.e., $|\vec{E}| \cdot(10$ points $)$
(b) Deduce the polarization (or bound) charge density ρ_{p} induced on the dielectric at an arbitrary point (x, y, z). (10 points)
(c) Find the total electrical energy density u_{E} at (x, y, z). (5 points)
5. A harmonic plane wave of frequency v is incident normally on an interface between two dielectric media of indices of refraction n_{1} and n_{2} with $n_{2}>n_{l}$. A fraction α of the energy is reflected and forms a standing wave when combined with the incoming wave. Recall that on reflection the electric field changes phase by π for $n_{2}>n_{l}$ and assume that the z -axis is along the incident wave.
(a) Find the expression for the total electric field as a function of the distance d from the interface in medium n_{1}. Determine the positions of the maxima and minima of $\left\langle E^{2}\right\rangle$. (10 points)
(b) Find $B(z, t)$ and $\left\langle B^{2}\right\rangle$ in medium n_{l}. (10 points)
(c) When W. Wiener did such an experiment using a photographic plate in 1890 , a band of minimum darkening of the plate was found for $d=0$. Was the darkening caused by the electric or the magnetic field? (5 points)

1. A static charge distribution produces a radial electric field $\vec{E}=A \frac{e^{-b r}}{r^{2}} \hat{r}$, where A and b are constants.
(a) What is the charge density? (7 points)
(b) What is the total charge? (5 points)
2. A sphere of radius R_{1} has a charge density ρ uniform within its volume, except for a small spherical hollow region of radius R_{2} located a distance a from the center.
(a). Find the electric field \vec{E} inside the hollow sphere. (6 points)
(b). Find the potential Φ at the center of the hollow sphere. (6 points)
3. Find the potential energy of a point charge (q) in vacuum a distance d from a semi-infinite dielectri
 medium with a dielectric constant $\varepsilon_{r} .(12)$
4. An infinitely long cylinder of radius a and surface charge density $\sigma=\sigma_{0} \cos 3 \varphi$ is surrounded by an infinitely long conducting cylindrical tube of inner radius b which is held at zero potential.

(a) Find the potential $\Phi(\rho, \varphi)$ in the $0 \leq \rho<a$ and the $a<\rho \leq b$ regions. (10)
(b) Find the surface charge density on the inner surface of the grounded cylindrical tube. (4 points)
5. A thin uniform donut, carrying charge Q and mass M, rotates about the z-axis as shown in the figure.

(a) Find the ratio of its magnetic dipole moment to its angular momentum. This is called the gyromagnetic ratio (or magnetomechanical ratio). (8 points)
(b) What is the gyromagnetic ratio for a uniform spinning sphere? (4 points)
(c) According to quantum mechanics, the angular momentum of a spinning electron is $\frac{1}{2} \hbar$, where \hbar is Plank's constant. What is the electron's magnetic dipole moment in $A \cdot m^{2}$? (4 points) $\left[e=1.6 \times 10^{-19} \mathrm{C}, m_{e}=9.11 \times 10^{-31} \mathrm{~kg}\right.$ and $\left.\hbar=1.05 \times 10^{-34} \mathrm{~J} \mathrm{~s}\right]$.

$$
\text { 2. Find the potential energy of a point charge }(q) \text { in vacuum a distance } d \text { away from a semi-infinite }
$$ dielectric medium whose dielectric constant is K. (16 points)

$$
\text { 3. A cylindrical thin shell of electric charge has length } l \text { and radius } a \text {, where } l \gg a \text {. The surface charge }
$$ density on the shell is σ. The shell rotates about its axis with an angular velocity ω which increases slowly with time as $\omega=k t$, where k is a constant and $t \geq 0$, shown below. Neglecting fringing effects, determine:

(a) The magnetic field inside the cylinder. (6 points)
(b) The electric field inside the cylinder. (6 points)
(c) The total electric field energy and the total magnetic field energy inside the cylinder. (5 points)
4. A conducting spherical shell of radius R is cut in half. The two hemispherical pieces are electrically separated from each other but are left close together as shown in the figure below, so that the distance separating the two halves can be neglected. The upper half is maintained at a potential $\phi=\phi_{0}$, and the lower half is maintained at a potential $\phi=0$. Calculate the electrostatic potential ϕ at all points in space outside of the surface of the conductors. Neglect terms falling faster than $1 / r^{4}$ (i.e. keep terms up to and including those with $1 / r^{4}$ dependence), where r is the distance from the center of the conductor. [Hint: $\left.P_{0}(x)=1, P_{l}(x)=x, P_{2}(x)=3 / 2 x^{2}-1 / 2, P_{3}(x)=5 / 2 x^{3}-3 / 2 x\right]$ (17 points)

$$
\text { 6. Linearly polarized light of the form } E_{x}(z, t)=E_{0} e^{i(k z-\omega t)} \text { is incident normally onto a material }
$$ which has index of refraction n_{R} for right-hand circularly polarized light and n_{L} for left-hand circularly polarized light. Determine the polarization of the reflected light and calculate the reflection coefficient of the intensity. (17 points)

1. Consider a sphere of radius R center at the origin. Suppose a point charge q is put at the origin and that this is the only charge inside or outside the sphere. Furthermore, the potential is $\Phi=V_{0} \cos \theta$ on the surface of the sphere. What is the electric potential both inside and outside the sphere? (12 points)
2. Consider a dielectric medium of infinite extent in all directions. The medium has a tensor permittivity, given by

$$
\stackrel{\tau}{\varepsilon}=\left(\begin{array}{lll}
\varepsilon_{x x} & 0 & 0 \\
0 & \varepsilon_{y y} & 0 \\
0 & 0 & \varepsilon_{z=}
\end{array}\right)
$$

where $\varepsilon_{x x}=\varepsilon_{y y}=\varepsilon_{\perp}, \varepsilon_{z z}=\varepsilon_{\|}, \varepsilon_{\perp} \neq \varepsilon_{\| \|}$and (x, y, z) refer to Cartesian coordinates. A point charge of charge q is placed at the origin of the coordinate system.
(a) Find the magnitude of the electric field at an arbitrary point (x, y, z), i.e. $|E|$. (5 points)
(b) Deduce the polarization (or bound) charge density ρ_{p} induced on the dielectric at an arbitrary point (x, y, z). (5 points)
(c) Find the total electrical energy density u_{E} at (x, y, z). (3 points) [Hint: $u_{E}=E \cdot D$]
3. A hydrogen atom is made up of a proton of charge e and an electron of charge $-e$. In 1913 Niels Bohr developed a theoretical model for the hydrogen atom. In Bohr's model, the hydrogen atom is most stable, when electron is at the ground state, i.e. the distance between the electron and the proton is equal to the Bohr radius a_{0}.
(a) The energy to move the electron from the ground state to infinity is called the binding energy.

Calculate the binding energy for the hydrogen atom. (5 points) $\left[a_{0}=0.52 \AA=0.52 \times 10^{-10} \mathrm{~m} ; e=1.6 \times\right.$ $10^{-19} \mathrm{C} ; \varepsilon_{0}=8.85 \times 10^{-12} \frac{C^{2}}{N \cdot \mathrm{~m}^{2}}$; you need to calculate a number.]
(b) Bohr's model is too crude, however. According to the quantum mechanics, the motion of the electron causes its charge to be "smeared out" into a spherical distribution around the proton, so that the electron is equivalent to a charge per unit volume of $\rho(r)=-\frac{e}{\pi a_{0}^{3}} e^{-2 r / a_{0}}$. Find the total amount of the hydrogen atom's charge that is enclosed within a sphere of radius r centered on the proton. (5 points) [Hint: use integration by parts and keep a_{0} and e in the final result.]
(c) Find the electric field caused by the charge of the hydrogen atom as a function of r in (b). (3 points) [keep a_{0}, ε_{0} and e in the final result.]
4. Two concentric conducting spheres of inner and outer radii a and b, respectively, carry charges $\pm Q$. The empty space between the spheres is half-filled by a hemispherical shell of dielectric (of dielectric constant ε_{r}) as shown in the figure.
(a) Find the electric field everywhere between the spheres. (6 points)
(b) Calculate the surface-charge distribution on the inner sphere. (3 points)
(c) Calculate the bound (or polarization) charge density induced on the surface of the dielectric at $r=a$. (3 points)

1. A thin linear antenna of length d, centered at the origin, and parallel to the z axis, is excited in such a way that the current (I) makes a full wavelength of sinusoidal oscillation at frequency ω.
(a) Find the current density, $\vec{J}(\vec{x}, t)$. (3 points)
(b) Find the vector potential of the radiation field, $\vec{A}(\vec{x}, t)$, in the far zone. (7 point)
(c) Calculate the power radiated per unit solid angle, $\frac{d P}{d \Omega}$, in the far zone. (7 point)
(Hint: if d, $\lambda \ll \mathrm{r}$, then $\left.\vec{A}(\vec{x})=\frac{\mu_{0}}{4 \pi} \frac{e^{i k r}}{r} \int \vec{J}\left(\vec{x}^{\prime}\right) e^{-i k \vec{x}^{\prime} \cdot \vec{x}^{\prime}} d^{3} x^{\prime}\right)$
2. Radiating electric quadrupole. Suppose an oscillating spheroidal distribution of charge with angular frequency ω (a spheroid is an ellipsoid having two axes of equal length).
(a) Assume the length along the x and y axes of the spheroidal distribution to be equal and $Q_{33}=Q_{0}$. Calculate the other elements of the electric quadrupole moment tensor. (8 points)
(b) Calculate the angular distribution of the radiated power as a function of θ. (8 points)
(Hint: $\left.Q_{i j}=\int\left(3 x_{i}{ }^{\prime} x_{j}^{\prime}-x^{\prime 2} \delta_{i j}\right) \rho\left(\vec{x}^{\prime}\right) d^{3} x^{\prime} \quad Q_{i}(\hat{n})=\sum_{j} Q_{i j} n_{j} \quad \frac{d P}{d \Omega}=\frac{c^{2} k^{6} Z_{0}}{1152 \pi^{2}}|\hat{n} \times \vec{Q}(\hat{n})|^{2}\right)$.
3. Consider a rectangular waveguide, infinitely long in the x-direction, with width (y-direction) 2 cm and a height (z-direction) 1 cm . The walls are perfect conductor, shown in Fig. 1.
(a) What are the boundary conditions on the components of \vec{E} and \vec{B} at the walls. (4 points)
(b) Write down the wave equations describing the \vec{E} and \vec{B} fields of the lowest mode. (Hint: the lowest mode has the electric field in the z-direction only). (5 points)
(c) For the lowest mode that can propagate, find the phase velocity and the group velocity. (8 points)

4. Two coaxial cylindrical conductors with radius r_{l} and r_{2} form a waveguide (shown in the figure below). The region between the conductors is vacuum for $\mathrm{z}<0$ and if filled with a dielectric medium with dielectric constant ε_{r} for $\mathbf{z}>0$. Assuming $\mu=\mu_{0}$,
(a) Calculate the E and B field of the TEM mode for $\mathrm{z}<0$ and $\mathrm{z}>0$. (9 points)
(b) If an electromagnetic wave in such a mode is incident from the left on the interface, calculate the transmitted and reflected waves. (5 points)
(c) What fraction of the incident energy is transmitted? What fraction is reflected? (4 points)

5. A small circuit loop of wire of radius a carries a current $i=i_{0} \cos (\omega t)$. The loop is located in the $x y$ plane (see the figure below) with $r \gg a$.
(a) Calculate the first non-zero multiple moment of the system. (5 points)
(b) Calculate the E and B fields of the first non-zero multiple moment.
(c) Determine the angular distribution of the radiation power and qualitatively plot the radiation pattern.
[Hint: you may directly use any the following equations: $\vec{A}_{E D}(\vec{x})=-\frac{i \mu_{0} \omega p}{4 \pi} \frac{e^{i k r}}{r}$,

$$
\vec{A}_{M D}(\vec{x})=\frac{\mu_{0} i k}{4 \pi} \frac{e^{i k r}}{r} \hat{n} \times \vec{m}, \vec{B}_{E Q}=-\frac{\mu_{0} i c k^{3}}{24 \pi} \frac{e^{i k r}}{r} \hat{n} \times \vec{Q}(\hat{n}) \text { and } Q_{i j}=\int\left(3 x_{i}^{\prime} x_{j}^{\prime}-x^{\prime 2} \delta_{i j}\right) \rho\left(x^{\prime}\right) d^{3} x^{\prime} . \text { But please }
$$ write down all the other necessary steps to derive your solutions].

PHYSICS 210B, Spring 2014

Final Exam (100 points in total)

- Closed books and closed notes
- Please write down the necessary intermediate steps
- Write your answers in the space provided. Continue on the back if necessary.

\qquad .

Problem 1: \qquad

Problem 2: \qquad

Problem 3: \qquad

Problem 4: \qquad

Problem 5: \qquad

Total:

1. A plane electromagnetic wave of frequency ω and wave number k propagates in the $+z$ direction. For $z<0$, the medium is air with $\varepsilon=\varepsilon_{0}$ and conductivity $\sigma=0$. For $z>0$, the medium is a cosy dielectric with $\varepsilon>\varepsilon_{0}$ and $\sigma>0$. Assume that $\mu=\mu_{0}$ in both media.
(a) Find the dispersion relation (i.e. the relationship between k and ω) in the lossy medium Please calculate both the real and imaginary part of k. (5 points)
(b) Find the limiting values of k (both the real and imaginary part) for a very good conductor and a very poor conductor. (4 points)
(c) Find the e^{-1} penetration depth δ for plane wave power in the lossy medium. (4 points)
(d) Find the power transmission coefficient T for transmission from $z<0$ to $z>0$, assuming $\sigma \ll \varepsilon \omega$ in the cosy medium. (7 points)
a) Maxwell's equations: $\vec{D} \times \vec{H}=\vec{J}+\frac{\partial \vec{P}}{\partial t} \Rightarrow i \vec{k} \times \vec{H}=\sigma \vec{E}-i \omega \varepsilon \vec{i}$ assuming harmonic time dependence

$$
\begin{aligned}
& \text { So since } \vec{k} \cdot \vec{E}=0 \Rightarrow \frac{i\left(-k^{2}\right)}{\omega \mu_{0}} \vec{E}=\sigma \vec{E}-i \omega \& \vec{E} \\
& \Rightarrow k^{2}=\omega^{2} \varepsilon \mu_{0}+i \omega \mu_{0} \sigma
\end{aligned}
$$

Assume $k=\alpha+i \beta \Rightarrow k^{2}=\left(\alpha^{2}-\beta^{2}\right)+2 i \alpha \beta$
So $\quad \alpha^{2}-\beta^{2}=\omega^{2} \varepsilon \mu_{0}$

$$
2 \alpha \beta=\omega \mu_{0} \sigma
$$

$$
\Rightarrow \begin{aligned}
& \text { Rek }=\alpha=\omega \sqrt{\mu_{0} \varepsilon}\left[\frac{1}{2}\left(1+\sqrt{1+\left(\frac{\sigma}{\varepsilon_{\omega}}\right)^{2}}\right)\right]^{1 / 2} \\
& \text { Ink }=\beta=\omega \sqrt{\mu_{0} \varepsilon}\left[\frac{1}{2}\left(-1+\sqrt{1+\left(\frac{\sigma}{\varepsilon_{\omega}}\right)^{2}}\right)\right]^{1 / 2}
\end{aligned}
$$

b) Good conductor, $\frac{\sigma}{\varepsilon \omega} \gg 1$, so

$$
\beta=\alpha \approx \sqrt{\frac{\omega \mu_{0} \sigma^{2}}{2}}
$$

- Poor conductor, $\frac{\sigma}{\varepsilon \omega} \ll 1$, so

$$
\beta \approx \frac{\sigma}{2} \sqrt{\frac{\mu_{0}}{\varepsilon}}
$$

$$
\alpha \approx \omega \sqrt{\mu_{0} \varepsilon}
$$

c) The transmitted wave is $E_{T}=E_{T} e^{-\beta z} e^{i(\alpha z-\omega t)}$

So the e^{-1} penetration depth is $\frac{1}{\beta}$ \& from part (a)
d) Recall that $\frac{E_{T}}{E_{I}}=\frac{2 \sigma}{1+n^{\prime}}$ and $n^{\prime}=\frac{0 k}{\omega}=\frac{c}{\omega}(a+i \beta)$

$$
\begin{aligned}
& \text { So } T=\frac{\frac{1}{2} \sqrt{\frac{\varepsilon}{\mu_{0}}}\left|E_{T}\right|^{2}}{\frac{1}{2} \sqrt{\frac{\varepsilon_{\varepsilon_{0}}}{\mu_{0}}}\left|E_{I}\right|^{2}}=\sqrt{\frac{\varepsilon}{\varepsilon_{0}}} \frac{4}{\left|n+n^{\prime}\right|^{2}}=\frac{4 / \varepsilon / \varepsilon_{0}}{1+2 \Omega n^{\prime}+\left.\ln ^{\prime}\right|^{2}} \\
& =\frac{4 \sqrt{\varepsilon \varepsilon_{0}}}{1+\frac{2 c \alpha}{\omega}+\left(\frac{c}{\omega}\right)^{2} \otimes\left(\alpha^{2}+\beta^{2}\right)} \\
& \text { Assuming } \sigma \ll \omega \bar{\varepsilon} \text {, we have } \quad T \approx \frac{4 \sqrt{\varepsilon / \varepsilon_{0}}}{\left(1+\frac{1}{\xi / \varepsilon_{0}}\right)^{2}+\frac{2}{\varepsilon_{0}} \sigma^{2} / 4 \varepsilon^{2} \omega^{2}}
\end{aligned}
$$

2. (a) Consider two positrons in a beam at SLAC. The beam has energy of about $50 \mathrm{GeV}\left(\gamma \approx 10^{5}\right)$. In the beam (rest) frame, they are separated by a distance d, and positron e_{2}^{+}is traveling directly ahead of e_{1}^{+}in the Z -axis, shown in the figure (left) below. Write down E, B, the Lorentz force F and the acceleration a at e_{1}^{+}due to e_{2}^{+}. Do this in both the rest and laboratory frames. (10 points)
(b) The problem is the same as in part (a) except this time the two positrons are traveling side by side as shown in the figure (right) below. (10 points)

Two positrons separated by a distance of d travel with a velocity of v in the Z axis.
a) In the rest frame, \vec{k}^{\prime}, we have $\vec{E}^{\prime}=-\frac{e}{4 \pi \varepsilon_{0} d^{z}} \hat{z}$ and $\vec{B}^{\prime}=0 . \quad \vec{F}^{\prime}=-\frac{e^{2}}{4 \pi \varepsilon_{0} d^{2}} \hat{z}$ and $\vec{a}^{\prime}=-\frac{e^{2}}{4 \pi \varepsilon_{0} m d^{2}} \hat{z}$
In the lab frame, k, we have $\vec{E}=\vec{E}, \vec{B}=\vec{B}^{\prime}=0$

$$
\vec{F}=e \vec{E}=\vec{F}^{\prime} \text { and } \vec{a}=4
$$

b)

$$
\begin{aligned}
& \operatorname{In} k^{\prime}, \quad \vec{E}^{\prime}=-\frac{e}{4 \pi \varepsilon_{0} d^{2}} \hat{x} \quad \vec{B}^{\prime}=0 \\
& \vec{F}^{\prime}=-\frac{e^{2}}{4 \pi \varepsilon_{0} d^{2}} \hat{x} \quad \vec{a}^{\prime}=-\frac{e^{2}}{4 \pi m \varepsilon_{0} d^{2} \hat{x}} \\
& \ln k, \quad \vec{E}=\gamma \vec{E}^{\prime}, \quad \vec{B}=\gamma \frac{B}{c} \overrightarrow{E^{\prime}} \hat{y} \quad \vec{E}=\frac{\vec{F}^{\prime}}{\gamma} \\
& \vec{a}=\frac{F}{m \gamma}=\frac{\vec{a}^{\prime}}{\gamma^{2}}
\end{aligned}
$$

3. To account for the effects of energy radiation by an accelerating charge particle, we must modify Newton's equation of motion by adding a radiative reaction force F_{R}.
(a) Assume for simplicity that the orbit is circular so that $v \cdot \dot{v}=0$. Show the classic result for F_{R} is:

$$
\vec{F}_{R}=\frac{2}{3} \frac{e^{2}}{c^{3}} \cdot \vec{i}
$$

(7 points).
(b) Now consider a free electron. Let a plane wave with electric field $E=E_{0} e^{-i \omega t}$ be incident on the electron. Again assume that $v \ll c$. What is the time-averaged force $\langle F\rangle$ on the electron due to the electromagnetic wave? (9 points)
(c) Use the radiation pressure p of this wave to deduce the effective cross section for the scattering of radiation: $\sigma=\langle F\rangle / p$. [Hint: $p=\langle S\rangle / c]$ (4 points)
a) Larmor formula says $p=\frac{2 e^{2}}{3 c^{3}} \dot{v} \cdot \dot{v}=-\vec{F} \cdot \vec{v}$

If we tiny $\vec{F}=\frac{2}{3} \frac{e^{2}}{c^{3}} \hat{V}^{3}$, we get

$$
\dot{\vec{V}} \cdot \dot{\vec{v}}=-\frac{\cdot 0}{v} \cdot \vec{v}=-\frac{d}{d t}(\vec{v} \cdot(\stackrel{\dot{\vec{v}}}{\dot{v}})+\dot{\vec{v}} \cdot \stackrel{\dot{\rightharpoonup}}{v}
$$

So this works
b) Equation of motion says

$$
m \ddot{n}=-e \vec{E}_{0} e^{-i \omega t}+\frac{2 e^{2}}{3 c^{3}} \ddot{\ddot{r}}
$$

Solved by $\vec{r}=\vec{r}_{0} e^{-1 \omega t}$ where $\vec{r}_{D}=\frac{e \vec{E}_{0}}{m \omega^{2}+i \frac{2 e^{2} \omega^{3}}{3 c^{3}}}$

$$
\text { So } \begin{aligned}
\langle\vec{F}\rangle & =\left\langle-e \vec{E}_{0} \cdot e^{-i \omega t}-\frac{e}{c} \vec{v} \times \vec{B}\right\rangle \\
& =-\frac{e}{c}\langle\vec{v} \times \vec{B}\rangle \text { where }\left\langle e^{-i \omega t}\right\rangle=0 \text { and } \\
\vec{B} & =\hat{k} \times \vec{E}
\end{aligned}
$$

Since $\vec{v}=\vec{r}=-i \omega \vec{r}_{0} e^{-i \omega t}$, beget

$$
\begin{aligned}
& \langle\vec{F}\rangle=-\frac{e}{c}\langle\underbrace{\left\langle e^{-2 i \omega t}\right.}_{\frac{1}{2}}\rangle \operatorname{Re}\left[\frac{i \omega e E_{0}}{m \omega^{2}+i \frac{2 e^{2} \omega^{3}}{3 c^{3}}} \times\left(\hat{k} \times \vec{E}_{0}\right)\right] \\
& =-\frac{e^{2}}{2 c}\left|E_{0}\right|^{2} \hat{k} \operatorname{Re}\left[\frac{i \omega}{m \omega^{2}-i \frac{2 e^{2} \omega^{3}}{3 c^{3}}}\right] \\
& =-\frac{e^{2}}{\mathbb{U} c}\left|E_{0}\right|^{2} \hat{k}\left(-\frac{z e^{2} \omega^{4}}{3 c^{3}}\right)\left[m^{2} \omega^{4}+\left(\frac{2 e^{2} \omega^{3}}{3 c^{3}}\right)^{2}\right]^{-1}
\end{aligned}
$$

c) $\langle p\rangle=\frac{1}{c}|\langle\vec{s}\rangle|=\frac{\left|E_{0}\right|^{2}}{c} \frac{a}{8 i r} \quad$ since $\langle s\rangle=\frac{c}{4 \pi} \frac{1}{2} \operatorname{Re}\left(E^{2} \times B\right)$

Then $\sigma=\frac{|\langle F\rangle|}{\langle p\rangle}=\frac{e^{4}\left|E_{0}\right|^{2}}{3 m^{2} c^{4}} \frac{8 \pi}{\left|E_{0}\right|^{2}}=\frac{8 \pi}{3} r_{0}^{2}$
4. Two point charges of charge e are located at the ends of a line of length 21 that rotates with a constant angular velocity $\omega / 2$ about an axis perpendicular to the line and through its center as shown in
the figure below. the figure below.
a) Find (1) the electric dipole moment, (2) the magnetic dipole moment, and (3) the electric quadrupole moment. (10 points)
b) What is the lowest order radiation emitted by this system? Calculate E and B of the radiation. (10 points)

$$
\begin{aligned}
& {\left[\text { Hint: } \vec{B}_{E D}=\frac{\mu_{0} c k^{2}}{4 \pi} \frac{e^{i k r}}{r} \hat{n} \times \vec{p}, \vec{B}_{M D}=\frac{\mu_{0} k^{2}}{4 \pi} \frac{e^{i k r}}{r}(\hat{n} \times \vec{m}) \times \hat{n}, \vec{B}_{E Q}=-\frac{\mu_{0} i c k^{3}}{24 \pi} \frac{e^{i k r}}{r} \hat{n} \times Q(\hat{n}),\right.} \\
& \left.E=Z_{0}(H \times \hat{n}), Q_{1}(\hat{n})=\sum_{j} Q_{i j} n_{j} \text { and } Q_{i j}=\int\left(3 x_{i}^{\prime} x_{j}^{\prime}-x^{\prime 2} \delta_{i j}\right) \rho\left(x^{\prime}\right) d^{3} x^{\prime}\right]
\end{aligned}
$$

a)

$$
\begin{aligned}
\vec{p} & =0 \\
\vec{m} & =\frac{2 e}{T} \pi e^{2} \hat{z}=\frac{1}{2} e \omega e^{2} \hat{z} R^{\text {not time }} \\
Q_{x x} & =e e^{2}\left[1+3 \cos \left(\omega t^{\prime}\right)\right] \\
Q_{x y} & =3 e R^{2} \sin \left(\omega t^{\prime}\right)=Q_{y \pi} \\
Q_{22} & =e R^{2}\left[1-3 \cos \left(\omega t^{\prime}\right)\right]
\end{aligned}
$$

b) Electric quadmpole radiation is the lowest order radiation (M constant will not produce radiation).

Plug $Q_{i j}$ into formulas!
5. An un-polarized plane electromagnetic wave is scattered by a free electron. Derive the differential cross-section for scattering in the non-relativistic limit (Thompson scattering). (20 points)

$$
\vec{E}_{i}=\vec{E}_{0} e^{-i(\omega t-\vec{k} \cdot \vec{x})}
$$

$$
\vec{F}=m \ddot{\vec{x}} \cong-e \vec{E}_{0} e^{-i \omega t} \quad \text { assuming } e^{-i \omega\left(t-\frac{1}{x} \hat{k}^{c}\right.}
$$

Solved by $\vec{x}=\vec{x}_{0} e^{-i \omega t}$ where $\vec{x}_{0}=\frac{e \overrightarrow{F_{0}}}{m \omega^{2}}$
\Rightarrow induced dipole moment is

$$
\begin{aligned}
\vec{p} & =-e \vec{r}=-\frac{e^{2} \vec{E}_{0}}{m \omega^{2}} e^{-i \omega t} \\
\Rightarrow \vec{E}_{\text {scat }} & =\frac{k^{2}}{4 \pi \varepsilon_{0}^{2}} \frac{e^{i k r}}{r}[(\hat{n} \times \vec{p}) \times \hat{n}]
\end{aligned}
$$

So $\frac{d \sigma^{\sigma}}{d \Omega}=\frac{r^{2}\left|\hat{\varepsilon}^{*} \cdot \vec{E}_{s c}\right|^{2}}{\left|\hat{\varepsilon}_{0} \cdot \vec{E}_{i \sigma}\right|^{2}} \quad$ where $\quad \hat{\varepsilon}_{3}=\frac{\vec{E}_{i}}{\left|E_{0}\right|}$

$$
=\frac{\left.\left(\frac{k^{2}}{4 \pi \varepsilon_{0}^{2}}\right)^{2} \right\rvert\,\left[(p \cdot n)\left(n^{0} \cdot \varepsilon^{*}\right)-p \cdot \varepsilon^{2}\right]^{2}}{\left|E_{0}\right|^{2}}=\left(\frac{k^{2}}{4 \pi \varepsilon_{0}^{3}}\right)^{2}\left(\frac{e^{2}}{m \omega^{2}}\right)^{2} r \varepsilon^{*} \cdot \varepsilon_{0}
$$

Since the incident wave wag unpolarized, we reed to average over $\hat{\varepsilon}_{\boldsymbol{a}}$.
choose coordinates so that

In general,

$$
\begin{aligned}
& \hat{\varepsilon}_{0}^{\prime \prime} \cdot \hat{\varepsilon}^{\prime \prime}=\cos \theta \cos \varphi \\
& \hat{\varepsilon}_{0}^{1} \cdot \hat{\varepsilon}^{1}=\sin \varphi
\end{aligned}
$$

average over $\Phi: 0 \rightarrow 2 \pi$

$$
\begin{aligned}
& \frac{d \sigma_{2 \|} \|}{d \Omega}=\left(\frac{k^{2} e^{2}}{4 \pi \varepsilon_{0} m \omega^{2}}\right)^{2}\left|\varepsilon_{\frac{1}{\prime}}^{*} \cdot \varepsilon_{0}\right|^{2} \\
&=\left(\frac{k^{2} e^{2}}{4 \pi \varepsilon_{0} m \omega^{2}}\right)^{2} \cos ^{2} \theta\langle\underbrace{\left.\cos ^{2} \phi\right\rangle}_{\frac{1}{2}} \\
& \frac{d \sigma_{13}}{d \Omega}=\left(\frac{k^{2} e^{2}}{4 \pi \varepsilon_{0} m \omega^{2}}\right)^{2}\left|\varepsilon_{1}^{*} \cdot \varepsilon_{0}\right|^{2} \\
&=\left(\frac{k^{2} e^{2}}{4 \pi \varepsilon_{0} m \omega_{0}^{2}}\right)^{2} \underbrace{\left.\sin ^{2} \varphi\right\rangle}_{\frac{1}{2}} \\
& \Rightarrow \frac{d \sigma}{d \Omega}=\frac{d \sigma_{11}}{d \Omega}+\frac{d \sigma_{1}}{d \Omega}=\frac{1}{2}\left(\frac{k^{2} e^{2}}{4 \pi \varepsilon_{0} m \omega^{2}}\right)^{2}\left(1+\cos ^{2} \theta\right)
\end{aligned}
$$

