Physics & Astronomy Comprehensive Exam, UCLA, Fall 2012
(For those taking the exam for the first time)

1. Classical Mechanics (Version 1)

A mass m; moves around a hole on a frictionless horizontal plane. The mass is tied to a massless
string of fixed length which passes through the hole. A mass m; is tied to the other end of the
string and is subject to uniform gravity with acceleration constant g (see figure below).

g, ™

M,
() Given the initial position R and velocity V in the plane of the table and the masses m; and
my, find the equation that determines the maximum and minimum radial distances of the orbit.
(Do not attempt to solve this equation.)
(b) Find the frequency of oscillation of the radius of the orbit when the orbit is only slightly
different from circular.



Questions for the Comprehensive Exam Fall 2012

2. Classical Mechanics (Version 1)

A K-meson of mass mx = 494 MeV decays into a x#-meson of mass m, = 106 MeV and a neutrino

of approximately zero mass m, = 0. Calculate the kinetic energies of the #-meson and of the
neutrino for a K-meson decaying while at rest.



Physics & Astronomy Comprehensive Exam, UCLA, Fall 2012
(For those repeating the exam)

1. Statistical Mechanics (Version 2)

Calculate the lowest non-zero contribution to the specific heat Cy of an ideal Fermi gas at low
temperatures T, as a function of the one-particle density of states D(¢) at energy &.

The value of the following integral may be helpful,
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Questions for the Comprehensive Exam Fall 2012

2. Electromagnetism (Version 2)

A current sheet of infinite extent along the y and x-directions is at a distance d from an infinite
planar wall located at z = 0, as sketched in the diagram below.
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The current density of the sheet oscillates in time t, and is given by
j(x,y,z) = Acos(w t)5(z—d)y .
The wall exhibits a power reflection coefficient R at frequency @. The remaining regions are
vacuum.

(@) Apply complex notation to find the electric and magnetic field vectors for z > 0. Use the
Cartesian coordinates indicated in the diagram.

(b) Find the time averaged power per unit area required to maintain the current flowing in
the sheet.



Questions for the Comprehensive Exam Fall 2012

3. Quantum Mechanics

The magnetic dipole moment of the electron is p=-2x4;S, where g, :2e_h is the Bohr
mc

magneton (e > 0), S the spin.

(a) Write down the Hamiltonian for an electron in a uniform magnetic field B along the z-
axis (we consider only spin degrees of freedom in this problem, i.e. no momentum).

1
(b) At t =0, the state of the electron is: |W(0)> :L(J (where the notation is referred to

V2
the Pauli matrices). Find |y(t)), and <§X> : <§y> on the state |y(t)). Describe your
result in physical terms (i.e. what is the spin doing?).

(c) Now introduce a small uniform magnetic field B; along the x-axis. Calculate in
perturbation theory the first non-zero correction to the energy levels of the Hamiltonian
of part (a). Show that your result is consistent with the exact result (which you can easily
calculate).



Questions for the Comprehensive Exam Fall 2012
4. Quantum Mechanics

Consider a particle subject to a one-dimensional simple harmonic oscillator potential, whose
Hamiltonian is

2 2
H = p__i_ki
2m 2
where P =—i%0, is the particle’s momentum operator, m mass, and k spring constant. Suppose
that at t = O the state vector is given by

e—ipa/h‘0>
where |O> is the ground state and a is some number with dimension of length. Evaluate the
expectation value of position (x) for t> 0.



Questions for the Comprehensive Exam Fall 2012
5. Quantum Mechanics

A free, spinless non-relativistic particle with mass m and charge q is moving in a uniform
magnetic field B = Bz. Find the spectrum of energy eigenvalues.

(a) Write down the Hamiltonian H in terms of the kinetic momentum =, including the magnetic
field via the minimal substitution p—m = p - gA, where p is the canonical momentum and A is
the vector potential.

(b) Choose a convenient gauge and write A in terms of B.

(c) Calculate [ry, my].

(d) Write m, = i o (a-a") and Ty = a (a+a’), where a is a constant, a is an annihilation operator,
and a' is a creation operator. Find o.

(e) Find the eigenvalues of H.



Questions for the Comprehensive Exam Fall 2012

6. Quantum Mechanics

A particle in a spherically symmetrical potential is known to be in an eigenstate of L? and L, with
eigenvalues 7#°1(1+1) and m# , respectively, denoted by |Im>. L is the angular momentum
operator, whose components obey the usual commutation algebra. Prove that the expectation
values involving Ly and L, obey

10 +1)-m?

(=) =0, {i)=(15) 0=

in the eigenstate |Im).



Questions for the Comprehensive Exam Fall 2012
7. Quantum Mechanics

A system that has three unperturbed states can be represented by the perturbed Hamiltonian
matrix

E, 0 a
0 E b
a"~ b" E,

The quantities a and b are to be regarded as perturbations that are of the same order and
are small compared with E, — E;.
(@) Use the second-order nondegenerate perturbation theory to calculate the perturbed
eigenvalues.
(b) Diagonalize the matrix to find the exact eigenvalues.
(c) Use the second-order degenerate perturbation theory. Compare the results obtained.
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8. Statistical Mechanics

This problem concerns the fundamental definitions of thermodynamics. The numbers have been
kept small to minimize the mathematics — use discrete differences in place of derivatives where
appropriate.

A system has N=2 distinguishable particles, each of which can have energy 0, ¢, 2¢, 3¢, ...e.
Say the system has total energy E=5e¢.

(a) What is the entropy S?

(b) What is the temperature T?

(c) What is the chemical potential 4? Determine this by adding a 3" particle to the system.
Imagine a different system with N=6 distinguishable particles, each of which can have energy 0
or &

(d) Plot the entropy as a function of the different discrete values of the total E.

(e) For what value of E is the temperature maximized?

() Plot T as a function of E for the case where N is large (but fixed), and comment on all of the
various limiting cases.



Questions for the Comprehensive Exam Fall 2012
9. Statistical Mechanics

Consider capillary (surface tension driven) waves at the free surface of a film of liquid He of
area A. The dispersion relation is:

w = /E k3/2 (o is the surface tension and p the density)
P

Treating these excitations as quasi-particles obeying Bose statistics, find the contribution of these
capillary waves to the heat capacity of the film, specifically, the temperature dependence of this
contribution. (Hint: the energy of the quasi-particle is, of course, E, = 7 w.)
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10. Statistical Mechanics

Consider a collection of N classical and spinless, non-interacting charged particles of charge q
and mass m in a region of volume V in which a uniform magnetic field points along the z-

direction, i.e., B =B,Z, with B, a constant. The charges are in good contact with a heat reservoir
at temperature T.

(a) Deduce what is the equation of state for this magnetized system.

(b) Find the average induced magnetization {M) for this system.

(c) Find the relative (i.e., percentage) magnitude of the RMS fluctuation in average energy
(E).

10
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11. Electromagnetism

Consider an infinitely long cylindrical conductor of diameter D with an infinitely long
cylindrical channel cut into it. The channel has a circular cross section with diameter D/3 and is
offset from the axis of the conductor by D/6. The cylinder carries a current | out from the paper
plane, uniformly distributed across the solid part of the conductor.

lly

(a) Calculate the magnetic field everywhere on the X-Z plane (i.e. the axis that contains the axis
of the two cylinders).
(b) Calculate the magnetic field inside the cylindrical hole.

11
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12. Electromagnetism

A pulsar emits bursts of radio waves which are observed from the Earth at two different
frequencies, @y and @,. An astronomer notes that the arrival time of the bursts is delayed at the
lower frequency, that is, the pulse at @y arrives after the pulse at @,. The delay, 7 is due to
dispersion in the interstellar medium. Assume this medium consists of ionized hydrogen (called
the dilute plasma), m is the mass of the electron and N the number of electrons per unit volume.
(a) Find the index of refraction of the dilute plasma.
(b) Find the distance from the pulsar to the Earth.

12
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13. Electromagnetism

(a) Consider two positrons in a beam at SLAC. The beam has energy of about 50 GeV (y ~ 10°).
In the beam (rest) frame, they are separated by a distance d, and positron e, is traveling directly
ahead of e, in the Z-axis, shown in the figure (left) below. Write down E, B, the Lorentz force
F and the acceleration @ on e; exerted by e; . Do this in both the rest and laboratory frames.

(b) The problem is the same as in part (a) except this time the two positrons are traveling side by
side as shown in the figure (right) below.

+ 4
S €2 .
= F V ——

F—a— ’

Two positrons separated by a distance of d travel with a velocity of v in the Z axis.

13
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14. Electromagnetism

Consider a dielectric medium of infinite extent in all directions. The medium has a tensor
dielectric (at zero frequency) given by

&y O
e=0 ¢, O
0 0 ¢

4

with ¢, = ¢, = & # ¢,, and where (x, y, z) refer to Cartesian coordinates. A point charge of
charge q is placed at the origin of the coordinate system.

(a) Find the magnitude of the electric field at an arbitrary point (x, y, z), i.e., ‘E‘

(b) Deduce the polarization charge density p, induced on the dielectric at an arbitrary point

(%, Y, 2).
(c) Find the total electrical energy density u. at (X, Y, z).

14
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Question 1

A mass m; moves around a hole on a frictionless horizontal plane. The mass is tied to a
massless string of fixed length which passes through the hole. A mass ms is tied to the other
end of the string and is subject to uniform gravity with acceleration constant g (see fig 1).
(a) Given the initial position Ry and velocity Vy in the plane of the table and the masses
my and ms, find the equation that determines the maximum and minimum radial distances
of the orbit. (Do not attempt to solve this equation.)

(b) Find the frequency of oscillation of the radius of the orbit when the orbit is only slightly
different from circular.

£, ™

Solution to Question 1

The system is conservative and subject to holonomic constraints; thus we use the La-
grangian formulation of mechanics to derive the equations of motion. We use polar coordi-
nates (7,0) in the horizontal plane to parametrize the position of m; (and thus of my).

(a) The Lagrangian L for the combined system is given by,
1 : 1
L= 5 (7% 4+ r20%) + 5717/27'"2 — Magr (0.1)

The canonical momenta are,

Pr = (m1+m2)r
pe = myr’f (0.2)




Since L is independent of 6, the angular momentum py is conserved during the motion. The
Euler-Lagrange equation for r is given by,

(mq + mg)it — mqr0? + mag = 0 (0.3)

Eliminating 6, we find a reduced equation for 7 only,

I

myrs

(mq + ma)it — +myg =0 (0.4)

By multiplying through by r, we integrate the resulting equation to get the total energy e,

2

1 22 Dy
2(m1 ma)r 4 2mqr?

The constants of motion py and € are determined by the initial conditions, which we cast in
the following form,

+ mogr =¢ (0.5)

r= Ry 7 = Vy cos ¢
rd =V sing (0.6)
so that
ps = mRoVpsing
e = —;—mﬂ/g + %mg%z cos? ¢ + magRy (0.7)

The condition for extremal radius r = r, is given by setting 7 = 0, and we find,

2

Dy _
2mar? + maogr, =€ (0.8)

This equation is equivalent to a 3-rd order polynomial equation which always has one phys-
ically unacceptable negative root, and two positive roots representing the minimum and the
maximum radius.

(b) Circular motion corresponds to r = Ry and ¢ = 7/2. Small deviations from circular
motion may be parametrized by 7 = Ry + = with |z| < Ry, and ¢ — 7/2 small. Since the
corrections to pg due to the perturbation in ¢ are second order, we may neglect those. Thus,
the fluctuation equation becomes,

3p3

my Rg

Using the equilibrium condition for circular motion, p2 = m;myR3g, we find the following
frequency w of small oscillations,

(mq + mg) + z=0 (0.9

2 3mag

Y= G+ ma)Re (0.10)
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Question 2

A K-meson of mass my = 494 MeV decays into a py-meson of mass m,, = 106 MeV and a
neutrino of approximately zero mass m, = 0. Calculate the kinetic energies of the y-meson
and of the neutrino for a K-meson decaying while at rest.

Solution to Question 2

Conservation of momentum implies that the momentum py of the y-meson and the
momentum p, of the neutrino are opposite to one another p, = —p,. Thus the energy of
the neutrino is given by E, = |p,|c = |pu|c. Conservation of energy reads,

mgc? = |pulc+ 4/p2c? +mict (0.11)

Solving for |p,|, we find,

2 2
My —m,
= — 0.12

The kinetic energy T, of the neutrino and of the kinetic energy T, of the y-meson are,

2 2
7, = KT Mu o
2mK
mik +m2 )
T# = WC —mp,c (013)

Numerical evaluation gives approximate values,

T, = 236 MeV T, = 152 MeV (0.14)



Question j. / VERZION 2.

Calculate the lowest non-zero contribution to the specific heat Cy of an ideal Fermi gas
at low temperatures T', as a function of the one-particle density of states D(g) at energy ¢.
The value of the following integral may be helpful,

00 IL‘2 71.2

—0o0

Solution to Question 3

In terms of the density of one-particle states D(e) and the Fermi occupation number,

1

1
f(€) = ePle—m) + 1 B = k—T' (016)
the total number of particles N and the internal energy E are given by,
N = / de D(e) ()
0
E = / deeD(e) f(e) (0.17)
0

(as usual, we have assumed that D(e) = 0 for € < 0). We also define the chemical potential
o at zero temperature by the relation,

N = / " de D(e) (0.18)

Since the function D(e) does not involve temperature, the specific heat is given by,

o 9
Cv =27 = /0 desD(s)% (0.19)

Working this out, and after some minor simplifications, we get,

_ L [*,_ ele=pD()
VTRT? Jy T (efle-n)/2 4 e—Ble-m/2)?

(0.20)

For low temperatures, the denominator is responsible for concentrating the support of the
integral over € near u, so we may extend the integration region all the way to —co. Also,
to leading order, we may evaluate D(e) at the central value u. Finally, the parity of the

4



remaining integral allows us to replace the factor € in the numerator by € — u, so that we

end up with the following expression,

_ D) [* . (€ — p)?

Cy =
|4 kT2 J_, (eﬂ(e—p)/2+e—ﬁ(5—#)/2)2

Changing variables from € to z with € = p + 2kT'z gives,

.’L'2

— QL2 ®
Cy = 8kTD(y) /_ Kt e

(0.21)

(0.22)

Finally, using the value of the integral stated in the problem, and using the fact that for
small temperatures we have u = g + O(T?), we may approximate this result further by

setting D(u) = D(uo), so that the final result is given by,

Cy = é—ﬂ2/€2D(M0) T

(0.23)
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2012 Comprehensive Exam

0*4— QM1

Consider a particle subject to a one-dimensional simple harmonic oscillator potential,
whose Hamiltonian is

2 2
P kx
H=—+—,
2m 2
where p = —ihid, is the particle’s momentum operator, m mass, and k spring constant.

Suppose that at t = 0 the state vector is given by
e—z’pa/ h| 0) ,

where |0) is the ground state and a is some number with dimension of length. Evaluate the
expectation value of position () for ¢ > 0.

Solution: At t =0,
(p)o = (0]€®*/"pe=**/|0) = (0|p|0) = 0
and
(z)o = (0] Pze=P/"0) = (0|e™*/*[z, e=*/"]|0) = iR(0]e/"9,e~P/*0) = a.

Using harmonic oscillator equations of motion,

.1 p .0

T = E[H,x] =0,H = . and p= ﬁ[H,p] = -9, H = —kzx,
we immediately find the oscillatory solution in the form

(x)¢ = acos(wt),

were w = 1/k/m is the oscillator natural frequency.
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Q.U

A particle in a spherically symmetrical potential is known to be in an eigenstate of L?
-and L, with eigenvalues A?l(l + 1) and mnh, respectively, denoted by |lm). L is the angular
momentum operator, whose components obey the usual commutation algebra. Prove that
the expectation values involving L, and L, obey

_ll+1)-m?

(Lm) = (Ly) =0, (Li) = (LZ> = —_2—h2

in the eigenstate |Im).

Solution: Using [L;, L;] = ihe;ji Lk, we evaluate (henceforth setting i = 1)

(L2 — L2) =([Ls, L.)* — [Ly, L.)*) = 2m{LoL, Ly — LyL,Ly) — m*(L3 — L2) — (LgL?Ly — LyL%L,)

=2m(LyL,L, — LyL,L,) — m*(L% — L)

— (Lo L,[L,, Ly) + mLyL,Ly — Ly, L,]L,Ly — mLy,L,L,)
=m(LyL,L; — LyL,L,) — m*(L% — L)
=m(Lg[L,, Ls) + mL% — [Ly, L.]L, — ij) —m2(L2 - Lj) =0.

Thus (restoring #)

(12) = (12) = (L2;L§) _ l(l+12)—m2h2’

The other identities are also easily obtained:

ih(L;) = ([Ly’ L) = 'm<Ly - Ly) =0,

and similarly for (L,).
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A pulsar emits bursts of radio waves which are observed from the Earth at two different
frequencies, @ and @>. An astronomer notes that the arrival time of the bursts is delayed
at the lower frequency, that is, the pulse at @, arrives after the pulse at @>. The delay, 7is
due to dispersion in the interstellar medium. Assume this medium consists of ionized
hydrogen (called the dilute plasma), m, is the mass of the electron and N the number of
electrons per unit volume.

(a). Find the index of refraction of the dilute plasma.

(b). Find the distance from the pulsar to the Earth.

Solution
(a) For an electron in the dilute plasma, we have m,X = —eE and E = E,e "™
Solving the above equaiton, we get the dipole moment of the electron,

" s *Im) =
P =K = ___(e 2m) E
®
The polarization is given by
» Né /m) -
pP= _(__ev—m)E
®°

ﬂ - w’ N

As P=¢gyx E,wehave ¢, =1+ y,=1-—5 where v, =e .
w” me,

2

: . . . ,
The index of refraction of the dilute plasma is n = \/; =41 7

(b) The pulse the pulsar emits is a wave packet that travels to the Earth. As such, it travels
at the group velocity, not the phase velocity.

2 2
a)l a)z
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(a) Consider two positrons in a beam at SLAC. The beam has energy of about 50 GeV (y
~ 10°). In the beam (rest) frame, they are separated by a distance d, and positron e, is

traveling directly ahead of e, in the Z-axis, shown in the figure (left) below. Write down
E. B.the Lorentz force ' and the acceleration @ on e, exerted by e, . Do this in both

the rest and laboratory frames. _
(b) The problem is the same as in part (a) except this time the two positrons are traveling
side by side as shown in the figure (right) below.

x
c+
dI ‘
z Vo
e; e . 4
- I
f—a— ’ "
Two positrons separated by a distance of d travel with a velocity of v in the Z axis.
Solution
(a) Let K’ and K the beam rest and laboratory frames, respectively.
In frame K°,
- | . - = e _ 1 e,
E'z———izz B'=0 F'=— ] e—zz a'=-— e—zz
dre, d dre, d dmme, d
In frame K,
A LA B=0 F=cE=F
dme, d*
Zi-c%—L(F—F 2)_ F} :%
dt  my my’ oy

In this case, the EM filed and the Lorentz force are the same in K and K’. Due to the

relativistic effect the acceleration of ¢, in frame K is only — times that in the rest frame.

In other words, the force exerted by a neighboring collinear charge on a charge moving
with high speed will be small.

(b) In frame K°,

. 1 5 = - I e B .
'=— izx B'=0 ':———e—zx a=- ] Ez—x
dre, d dre, d dmme, d
In frame K,
EZ}’E' E:y‘—iE'j} in
¢ /4
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