CLASSICAL MECHANICS 220
 Final Exam - Fall 2011

Monday 5 December 2011, at $3-6 \mathrm{pm}$, in PAB 2434

- Please write clearly;
- Print your name on every page used, including this one;
- Make clear which question you are answering on each page;
- All five questions below are independent from one another.
- No books, notes, computers, or calculators are allowed during the exam;
- Please turn off cell-phones, iPhones, iPods, iPads, Kindles, and other electronic devices.

Grades

Q1.
Q2.
Q3.
Q4.
Q5.

Total
/60

QUESTION 1 [12 points]

A torsion pendulum consists of a vertical wire attached to a mass which may rotate about the vertical direction. Consider three torsion pendulums which consist of identical wires from which identical homogeneous solid cubes are suspended. One cube is suspended from a vertex, one from the center of an edge, and one from the center of a face, as shown in the figure. What are the ratios of the periods of the three pendulums? Justify your answer.

QUESTION 2 [12 points]
A non-relativistic particle with mass m and electric charge e moves in a two-dimensional plane (with Cartesian coordinates x, y), under the influence of a constant uniform magnetic field $\mathbf{B}=(0,0, B)$, and an inverted harmonic oscillator potential,

$$
\begin{equation*}
V(x, y)=-\frac{1}{2} m \omega^{2}\left(x^{2}+y^{2}\right) \tag{0.1}
\end{equation*}
$$

(a) Write down the Lagrangian for this system in the $x y$ plane;
(b) Derive the corresponding Euler-Lagrange equations;
(c) Solve the Euler-Lagrange equations;
(d) Discuss stability of motion near the point $(x, y)=(0,0)$ as a function of m, e, ω, B.

QUESTION 3 [12 points]
A relativistic particle with rest mass m, and electric charge e moves in an electro-magnetic field which is constant in space and in time, and whose components with respect to an inertial frame \mathcal{R} are given by $\mathbf{E}=(E, 0,0)$ and $\mathbf{B}=(0,0, B)$.
(a) State the differential equation for the particle's velocity 4 -vector u^{μ} with respect to \mathcal{R}, and work out the equations, component-by-component.
(b) Show that the solutions to this equation are linear superpositions of exponentials, and determine the corresponding exponents.
(c) Determine the conditions on E and B under which all components of u^{μ} are bounded along every trajectory. Is this condition Lorentz-invariant ?

QUESTION 4 [12 points]

The sine-Gordon model is a field theory in 1 space and 1 time dimensions with a single scalar field $\phi(t, x)$, governed by the following action,

$$
\begin{equation*}
S[\phi]=\int d t d x\left(\frac{1}{2}\left(\partial_{t} \phi\right)^{2}-\frac{1}{2}\left(\partial_{x} \phi\right)^{2}-m^{2}(1-\cos \phi)\right) \tag{0.2}
\end{equation*}
$$

We shall work with units in which the speed of light is set to 1 . Also, m is a real constant.
(a) Use the variational principle to obtain the corresponding Euler-Lagrange equation, and give the expression for the total energy E of a general field $\phi(t, x)$.
(b) Show that the Euler-Lagrange equation of (a) admits solitons: solutions of the form $\phi(t, x)=f(y)$, with $y=\lambda(v)(x-v t)$, for arbitrary velocity v, such that $\cos f(\pm \infty)=0$, and $f(+\infty) \neq f(-\infty)$. Show that it is possible to choose $\lambda(v)$ such that f (as a function) is independent of v; determine this $\lambda(v)$, and the corresponding function f.
(c) Derive the relation between the total energy E of the soliton and its velocity v, and show that this relation is the relativistic one. Derive the mass of the soliton.

QUESTION 5 [12 points]

Two identical wheels of radius a and mass m are mounted vertically on the ends of a common horizontal axle (of zero mass and length $2 b$) such that the wheels rotate independently. The whole system rolls freely without slipping or sliding on the horizontal plane $z=0$. A figure of the system is given on the next page to illustrate the set-up.
(a) Show that the coordinates x, y, θ and $\varphi=\left(\varphi_{1}+\varphi_{2}\right) / 2$, indicated in figure 1 , may be used as suitable generalized coordinates in which all holonomic constraints, and any integrable non-holonomic constraints, have been eliminated.
(b) Exhibit the non-holonomic constraint(s) that remain on x, y, θ, φ, if any.
(c) Write down the Lagrangian when no external forces, other than those associated with the constraints, operate on the system.
(d) With the method of Lagrange multipliers, derive the Euler-Lagrange equations.

Figure 1: Two vertical wheels mounted on a horizontal axle.

Mechanics 220
Final Exam
Fall 2011.
Solutions.
(1). Consider a homogeneous solid cube with nerpect to the following coordinate system.

(a) The body of the cube is now symmetrical under reflection of any coordinate axis:

$$
x_{1} \rightarrow-x_{1}, x_{2} \rightarrow-x_{2}, x_{3} \rightarrow-x_{3} .
$$

The moment of inertia tenor the has vanishing off-diagomal components, since each of there is odd under two reflection.
(b) The diagonal entries of the inertia tensor are equal to one another as the loge above is dearly symmetrical under interchange of the the weser.
(d) Since the inertia Censor is feopoctional to the identity, and each notation of the frobem laser though the C.M. of the cube 0: the periods of all three rotation coincide.
(2) The qenevel Lagrangian for a chayed pactide in an e.m. fidd is (is 2-dimensom).

$$
L=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)+e A_{\mu}(x) \dot{x}^{\mu}-V(x, y) .
$$

We choore a gange for constant magnetic field B :

$$
\left\{\begin{array}{l}
A_{2}=\frac{1}{2} B x \\
A_{1}=-\frac{1}{2} B y
\end{array}\right.
$$

(a) Hence one hagrangrani is given hy,

$$
L=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)+\frac{e B}{2}(x \dot{y}-y \dot{x})+\frac{1}{2} m \omega^{2}\left(x^{2}+y^{2}\right) .
$$

(b)

$$
\begin{aligned}
& p_{x}=\frac{\partial L}{\partial \dot{x}}=m \dot{x}-\frac{1}{2} e B y \\
& p_{y}=\frac{\partial L}{\partial \dot{y}}=m \dot{y}+\frac{1}{2} e B x \\
& \frac{\partial L}{\partial x}=\frac{e B}{2} \dot{y}+m \omega^{2} x \\
& \frac{\partial L}{\partial y}=-\frac{e B}{2} \dot{x}+m \omega^{2} y . \\
& \text { E-L.eqs: } \quad\left\{\begin{array}{l}
m \ddot{x}-e B \dot{y}-m \omega^{2} x=0 \\
m \ddot{y}+e B \dot{x}-m \omega^{2} y=0 .
\end{array}\right.
\end{aligned}
$$

(c) The eqs form a linear system, with constant coefficientr, of ordinary differential equation.

$$
\left(\begin{array}{ll}
\frac{d^{2}}{d t^{2}}-\omega^{2} & -\frac{e B}{m} \frac{d}{d t} \\
\frac{c B}{m} \frac{d}{d t} & \frac{d^{2}}{d t^{2}}-\omega^{2}
\end{array}\right)\binom{x}{y}=0
$$

Solutiom are geverally enponentiah of t.

$$
\begin{aligned}
& \binom{x}{y}(t)=\binom{x_{0}}{y_{0}} e^{\lambda t} \\
& \left(\begin{array}{cc}
\lambda^{2}-\omega^{2} & -\frac{e B}{m} \lambda \\
\frac{e B}{m} \lambda & \lambda^{2}-\omega^{2}
\end{array}\right)\binom{x_{0}}{y_{0}}=0 .
\end{aligned}
$$

Vawshing detuminant:

$$
\begin{aligned}
& \left(\lambda^{2}-\omega^{2}\right)^{2}+\frac{e^{2} B^{2}}{m^{2}} \lambda^{2}=0 \\
\Rightarrow & \left(\lambda^{2}-\omega^{2}+\frac{i e B}{m} \lambda\right)\left(\lambda^{2}-\omega^{2}-\frac{i e B}{m} \lambda\right)=0
\end{aligned}
$$

Fint factor: vavisher when

$$
\begin{aligned}
& \left(\lambda+\frac{i e B}{2 m}\right)^{2}=\omega^{2}-\frac{e^{2} B^{2}}{4 m^{2}} \\
& \lambda=-\frac{i e B}{2 m} \pm \sqrt{\omega^{2}-\frac{e^{2} B^{2}}{4 m^{2}}}
\end{aligned}
$$

Secoud factor vamsher when

$$
\lambda=+\frac{1 e B}{2 m} \pm \sqrt{\omega^{2}-\frac{e^{2} B^{2}}{4 m^{2}}}
$$

(d). $\quad \omega^{2}>\frac{e^{2} B^{2}}{4 m^{2}}$: wustable $\quad \omega^{2} \leqslant \frac{e^{2} B^{2}}{4 m^{2}}$: stable.
(3) Convenient to wok with 4 -meitor sotation.

$$
F_{\mu \nu}=\left(\begin{array}{cccc}
0 & -E_{c} & 0 & 0 \\
E_{C} & 0 & B & 0 \\
0 & -B & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(a) $m \frac{d u^{\mu}}{d \tau}=e F^{\mu v} u_{v}=e \eta^{\mu k} F_{k v} u^{v}$

$$
\begin{aligned}
& m \frac{d u^{0}}{d \tau}=\frac{e E}{c} u^{\prime} \\
& m \frac{d u^{\prime}}{d \tau}=\frac{e E}{c} u^{0}+e B u^{2} \\
& m \frac{d u^{2}}{d \tau}=-e B u^{\prime} \\
& m \frac{d u^{3}}{d \tau}=0 .
\end{aligned}
$$

(b). $u^{3}=$ coustant; other eq. Const. coeff \Rightarrow enp.sds.

$$
\begin{gathered}
\left(\begin{array}{l}
u^{0} \\
u^{1} \\
u^{2}
\end{array}\right)=\left(\begin{array}{l}
\alpha^{0} \\
\alpha^{1} \\
\alpha^{2}
\end{array}\right) e^{\lambda \tau} \\
\left(\begin{array}{ccc}
m \frac{d}{d \tau} & -e E / c & 0 \\
-e E / c & m \frac{d}{d \tau} & -e B \\
0 & e B & m \frac{d}{d \tau}
\end{array}\right)\left(\begin{array}{c}
\alpha^{0} \\
\alpha^{\prime} \\
\alpha^{2}
\end{array}\right) e^{\lambda \tau}=0 .
\end{gathered}
$$

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ccc}
\lambda m & -e E / c & 0 \\
-e E / c & \lambda m & e B \\
0 & \cdots e B & \lambda m
\end{array}\right)=0 \\
& m \lambda\left(m^{2} \lambda^{2}+e^{2} B^{2}\right)+e E / c\left|\begin{array}{cc}
-e E / c & 0 \\
e B & \lambda_{m}
\end{array}\right|=0 . \\
& m \lambda\left(m^{2} \lambda^{2}+B^{2}\right)-m \lambda \frac{e^{2} E^{2}}{c^{2}}=0 \\
& m \lambda\left(m^{2} \lambda^{2}+B^{2}-\frac{\dot{E}^{2}}{c^{2}}\right)=0 \quad \lambda=0, m \lambda= \pm \sqrt{\frac{E^{2}-B^{2}}{c^{2}}}
\end{aligned}
$$

(c) $\lambda=0:\left(\begin{array}{l}\alpha^{0} \\ \alpha^{1} \\ \alpha^{2}\end{array}\right)=\left(\begin{array}{c}\alpha B \\ 0 . \\ -\alpha E_{c}\end{array}\right) \quad \alpha$ constant.
this is bounded.

$$
\begin{aligned}
\lambda= \pm \sqrt{\frac{E^{2}-13^{2}}{c^{2}}}: & \text { If } E^{2}>B^{2} c^{2}: \text { unbounded. } \\
& \text { If } E^{2} \leq B^{2} e^{2}: \text { bounded. }
\end{aligned}
$$

If $E^{2} \leq B^{2} \epsilon^{2}$: bounded.

The condition is Lorentz invariant, since

$$
-\frac{1}{2}\left(\frac{\vec{E}^{2}}{c^{2}}-\vec{B}^{2}\right)=F_{\mu v} F^{\mu v}
$$

is Lorentz-invariant.
(4)

$$
S[\phi]=\int d t d x\left(\frac{1}{2}\left(\partial_{t} \phi\right)^{2}-\frac{1}{2}\left(\partial_{x} \phi\right)^{2}-m^{2}(1-\cos \phi)\right)
$$

(a). $\delta S[\phi]=\int d t d x \delta \phi\left(-\partial_{t}^{2} \phi+\partial_{x}^{2} \phi-m^{2} \sin \phi\right)$
then field eq $\dot{r} \quad \partial_{t}^{2} \phi-\partial_{x}^{2} \phi+m^{2} \sin \phi=0$.
The Lagrangian has the form $L=T-V$, so the energy is simply

$$
H=E=\int d x\left(\frac{1}{2}\left(\partial_{t} \phi\right)^{2}+\frac{1}{2}\left(\partial_{x} \phi\right)^{2}+m^{2}(1-\cos \phi)\right) .
$$

(b) $\phi(t, x)=f(\lambda(x-v t)) \quad \lambda, v$ constant.

$$
\begin{array}{lr}
\partial_{t}^{2} \phi=\lambda^{2} v^{2} f^{\prime \prime} & f^{\prime \prime}=\text { doubt } \\
\partial_{x}^{2} \phi=\lambda^{2} f^{\prime \prime} & \text { with } \\
-\lambda^{2}\left(1-v^{2}\right) f^{\prime \prime}+m^{2} \sin f=0
\end{array}
$$

$$
f^{\prime \prime}=\text { double duivative }
$$

with respect to aymment.

Choosuig $\lambda^{2}\left(1-v^{2}\right)=1$, or $\lambda=\gamma=\left(1-v^{2}\right)^{-1 / 2}$, the equation for f is niderendent of v :

$$
\begin{aligned}
& f^{\prime \prime}-m^{2} \sin f=0 \\
& \Rightarrow \quad f^{\prime} f^{\prime \prime}-m^{2} \sin f f^{\prime}=0 \quad f^{\prime} \neq 0 . \\
& \frac{1}{2}\left(f^{\prime}\right)^{2}+m^{2} \cos f=\text { constant } .
\end{aligned}
$$

Require soliton behavior; $\cos f \rightarrow 1$ as $x \rightarrow \pm \infty$, so that also $f^{\prime} \rightarrow 0$ in that limit.

Hence the equation becomes:

$$
\begin{aligned}
\left(f^{\prime}\right)^{2} & =2 m^{2}(1-\cos f)=4 m^{2} \sin ^{2} \frac{f}{2} \\
\frac{f^{\prime}}{2} & = \pm m \sin \frac{f}{2}
\end{aligned}
$$

Rationalize in terms of $g=\operatorname{tg} \frac{f}{4}$

$$
\sin \frac{f}{2}=\frac{2 g}{1+g^{2}} \quad\left(\frac{f}{2}\right)^{\prime}=\frac{2 g^{\prime}}{1+g^{2}}
$$

In terms of g, the eq. becomes

$$
\begin{aligned}
& 2 g^{\prime}= \pm m 2 g \quad g(x)=e^{ \pm m y} \\
\Rightarrow \quad & \operatorname{tg} \frac{f}{4}=e^{ \pm m y}
\end{aligned}
$$

(c) To derive the total energy, compute

$$
\begin{aligned}
\operatorname{tg} \frac{\phi}{4} & =e^{ \pm m \gamma(x-v t)} \\
\left(\partial_{t} \phi\right)^{2} & =\gamma^{2} v^{2}\left(f^{\prime}\right)^{2} \\
(\partial x \phi)^{2} & =\gamma^{2}\left(f^{\prime}\right)^{2} \\
m^{2}(1-\cos \phi) & =2 m^{2} \sin ^{2} \frac{f}{2}=\frac{1}{2}\left(f^{\prime}\right)^{2} \\
& =\frac{1}{2}\left(\left(\partial_{x} \phi\right)^{2}-\left(\partial_{t} \phi\right)^{2}\right) .
\end{aligned}
$$

Energy simplifies:

$$
E=\int_{-\infty}^{\infty} d x\left(\partial_{x} \phi\right)^{2}
$$

Coneputenig this out:

$$
\begin{aligned}
E & =\gamma^{2} \int_{-\infty}^{\infty} d x f^{\prime}(\gamma(x-v t))^{2} \\
& =\gamma \int_{-\infty}^{\infty} d y f^{\prime}(y)^{2} \\
& =16 \gamma \int_{-\infty}^{\infty} d y \frac{\left(g^{\prime}\right)^{2}}{\left(1+g^{2}\right)^{2}} \\
& =16 \gamma \int_{-\infty}^{\infty} d y \frac{m^{2} e^{ \pm 2 m y}}{\left(1+e^{ \pm 2 m y}\right)^{2}} \\
& =8 m \gamma \int_{-\infty}^{\infty} \frac{(\pm) d\left(e^{ \pm 2 m y}\right)}{\left(1+e^{ \pm 2 m y}\right)^{2}} \\
E & =8 m \gamma
\end{aligned}
$$

Precisely velativistic founla for enengy venes man \& velocity, with man of soliton M

$$
M=8 \mathrm{~m} .
$$

(5) The holonomic constraints are solved by
(a) 8 (b)

$$
\begin{array}{ll}
x_{1}=x-b \cos \theta & x_{2}=x+b \cos \theta \\
y_{1}=y-b \sin \theta & y_{2}=y+b \sin \theta .
\end{array}
$$

The noi-holonomic coustrount are

$$
\begin{array}{ll}
\dot{x}_{1}=a \sin \theta \dot{\varphi}_{1} & \dot{x}_{2}=a \sin \theta \dot{\varphi}_{2} \\
\dot{y}_{1}=-a \cos \theta \dot{\varphi}_{1} & \dot{y}_{2}=-a \cos \theta \dot{\varphi}_{2}
\end{array}
$$

Working with coordinates $x, y, \theta, \varphi_{1}, \varphi_{2}$ is achieved by eliminating $x_{1}, x_{2}, y_{1}, y_{2}$ using the holonomic constraints:

$$
\begin{aligned}
& \dot{x}+b \sin \theta \dot{\theta}=a \sin \theta \dot{\varphi}_{1} \\
& \dot{x}-b \sin \theta \dot{\theta}=a \sin \theta \dot{\varphi}_{2} \\
& \dot{y}-b \cos \theta \dot{\theta}=-a \cos \theta \dot{\varphi}_{1} \\
& \dot{y}+b \cos \theta \dot{\theta}=-a \cos \theta \dot{\varphi}_{2}
\end{aligned}
$$

Subtracting to eliminate \dot{x} and \dot{y} gives

$$
\begin{aligned}
2 b \sin \theta \dot{\theta} & =a \sin \theta\left(\dot{\varphi}_{1}-\dot{\varphi}_{2}\right) \\
2 b \cos \theta \dot{\theta} & =a \cos \theta\left(\dot{\varphi}_{1}-\dot{\varphi}_{2}\right) .
\end{aligned}
$$

Equation are fop. to same $2 b \dot{\theta}=a\left(\dot{\varphi}_{1}-\dot{\varphi}_{2}\right)$.

But this constraint is inteqrable:

$$
2 b \theta=a\left(\varphi_{1}-\varphi_{2}\right)
$$

(A possible additine miteqration constant may be absocbed iuto the def. of φ_{1} and φ_{2}.). This leaves ar indeferedent variabler $x, y, \theta, \varphi=\left(\varphi_{1}+\varphi_{2}\right) / 2$. The vemainnig mon-holonomic coustraints are:

$$
\left\{\begin{aligned}
\dot{x} & =a \sin \theta \dot{\varphi} \\
\dot{y} & =-a \cos \theta \dot{\varphi}
\end{aligned}\right.
$$

(c). The Lagrangian is

$$
\begin{aligned}
L= & \frac{1}{2} m\left(\dot{x}_{1}^{2}+\dot{y}_{1}^{2}\right)+\frac{1}{2} m\left(\dot{x}_{2}^{2}+\dot{y}_{2}^{2}\right) \\
+ & \frac{1}{2} I_{1}\left(\dot{\varphi}_{1}^{2}+\dot{\varphi}_{2}^{2}\right)+\frac{1}{2} I_{2} \dot{\theta}^{2}+\frac{1}{2} I_{2} \dot{\theta}^{2} \\
& I_{1}=\frac{1}{2} m a^{2} \quad I_{2}=\frac{1}{4} m a^{2}
\end{aligned}
$$

In tecens of coordiuates $\quad x_{1}, y_{1}, \varphi_{1}, \varphi_{2}$

$$
\begin{gathered}
L=m\left(\dot{x}^{2}+\dot{y}^{2}\right)+m^{2} b^{2} \dot{\theta}^{2}+I_{2} \dot{\theta}^{2}+\frac{1}{2} I_{1}\left(\dot{\varphi}_{1}^{2}+\dot{\varphi}_{2}^{2}\right) \\
\varphi_{1}=\varphi+\frac{b}{a} \theta \quad \dot{\varphi}_{1}^{2}+\dot{\varphi}_{2}^{2}=2 \dot{\varphi}^{2}+2 \frac{b^{2}}{a^{2}} \dot{\theta}^{2} \\
\varphi_{2}=\varphi-\frac{b}{a} \theta \quad I \equiv m^{2} b^{2}+I_{2}+I_{1} \frac{b^{2}}{a^{2}} \\
L=m\left(\dot{x}^{2}+\dot{y}^{2}\right)+I \dot{\theta}^{2}+I_{1} \dot{\varphi}^{2}
\end{gathered}
$$

(d). The remaining constraints are of the form linecu and homogeneous in velocities:

$$
\begin{aligned}
& C_{x}=\dot{x}-a \sin \theta \dot{\varphi} \\
& C_{y}=\dot{y}+a \cos \theta \dot{\varphi}
\end{aligned}
$$

The Euler -Lagrange equations tale the form

$$
\begin{aligned}
& \frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}-\frac{\partial L}{\partial q_{i}}=\mu_{x} \frac{\partial C_{x}}{\partial \dot{q}_{i}}+\mu_{y} \frac{\partial C_{y}}{\partial \dot{q}_{i}} \\
& \frac{\partial L}{\partial \dot{x}}=2 m \dot{x} \quad \frac{\partial L}{\partial \dot{\theta}}=2 I \dot{\theta} \\
& \frac{\partial L}{\partial \dot{y}}=2 m \dot{y} \quad \frac{\partial L}{\partial \dot{\varphi}}=2 I_{1} \dot{\varphi} \\
& \left\{\begin{array}{l}
2 m \ddot{x}=\mu_{x} \\
2 m \ddot{y}=\mu_{y} \\
2 I_{1} \ddot{\varphi}=-a \sin \theta \mu_{x}+a \cos \theta \mu_{y} \\
2 I \ddot{\theta}=0
\end{array}\right.
\end{aligned}
$$

Together with the constraints $C_{x}=C_{y}=0$.

The system is easily solved. Compute the time derivative r of the constraints:

$$
\left\{\begin{array}{l}
\ddot{x}=a \sin \theta \ddot{\varphi}+a \cos \theta \dot{\theta} \dot{\varphi} \\
\ddot{y}=-a \cos \theta \ddot{\varphi}+a \sin \theta \dot{\theta} \dot{\varphi}
\end{array}\right.
$$

Also, we have from the last eq of motion:

$$
\dot{\theta}=\text { constant. }
$$

Eliminating \ddot{x}, \ddot{y} and μ_{x}, μ_{y} mi the $\dot{\varphi}$ eq:

$$
\begin{aligned}
2 I_{1} \ddot{\varphi}= & -2 m a \sin \theta(a \sin \theta \ddot{\varphi}+a \cos \theta \dot{\theta} \dot{\varphi}) \\
& +2 m a \cos \theta(-a \cos \theta \ddot{\varphi}+a \sin \theta \dot{\theta} \dot{\varphi})
\end{aligned}
$$

The $\dot{\theta} \dot{\varphi}$ nat cancel, and the remainder, reads:

$$
\left(2 I_{1}+2 m a^{2}\right) \ddot{\varphi}=0
$$

Since $I_{1}+m a^{2}>0$, we have

$$
\dot{\varphi}=\text { constant. }
$$

The general solution is then

$$
\begin{array}{ll}
\theta(t)=\theta_{0}+\omega t & \omega, \Omega \text { constant } . \\
\varphi(t)=\varphi_{0}+\Omega t & \\
\dot{x}=a \sin \left(\omega t+\theta_{0}\right) \Omega & x(t)=x_{0}-\frac{a \Omega}{\omega} \cos \left(\omega t+\theta_{0}\right) \\
\dot{y}=-a \cos \left(\omega t+\theta_{0}\right) \Omega & y(t)=y_{0}-\frac{a \Omega}{\omega} \sin \left(\cot +\theta_{0}\right)
\end{array}
$$

